2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割

一、寻找并绘制轮廓

寻找轮廓:findContours()函数

void findContours(InputArray image,OutputArrayofArrays contours,OutputArray hierarchy,int mode,int method,Point offset =Point())
//第一个参数:输入图像;第二个参数:检测到的轮廓;第三个参数:包含图像的拓扑信息;第四个参数:轮廓检索模式;五个参数:轮廓的近似方法;第六个参数:每个轮廓点的可选偏移量。

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第1张图片

绘制轮廓:drawContours()函数

void findContours(InputOutputArray image,InputArrayofArrays contours,int contourIdx,const Scalar& color,int thickness=1,int lineType=8,InputArray hierarchy=noArray(),int maxLevel=INT_MAX,Point offset =Point())
//第一个参数:目标图像;第二个参数:所有输入的轮廓;第三个参数:轮廓绘制的指示变量;第四个参数:轮廓颜色;五个参数:轮廓的粗细度;第六个参数:线条类型;第七个参数:可选的层次结构 信息;第八个参数:绘制轮廓的最大等级;第九个参数:可选的轮廓偏移参数。

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第2张图片

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include 
using namespace cv;
using namespace std;

#define WINDOW_NAME1 "【原始图窗口】"			//为窗口标题定义的宏 
#define WINDOW_NAME2 "【轮廓图】"					//为窗口标题定义的宏 

Mat g_srcImage;
Mat g_grayImage;
int g_nThresh = 80;
int g_nThresh_max = 255;
RNG g_rng(12345);
Mat g_cannyMat_output;
vector<vector<Point>> g_vContours;
vector<Vec4i> g_vHierarchy;

void on_ThreshChange(int, void*);

int main(int argc, char** argv)
{
	// 加载源图像
	g_srcImage = imread("1.jpg", 1);
	if (!g_srcImage.data) { printf("读取图片错误,请确定目录下是否有imread函数指定的图片存在~! \n"); return false; }

	// 转成灰度并模糊化降噪
	cvtColor(g_srcImage, g_grayImage, COLOR_BGR2GRAY);
	blur(g_grayImage, g_grayImage, Size(3, 3));

	// 创建窗口
	namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);
	imshow(WINDOW_NAME1, g_srcImage);

	//创建滚动条并初始化
	createTrackbar("canny阈值", WINDOW_NAME1, &g_nThresh, g_nThresh_max, on_ThreshChange);
	on_ThreshChange(0, 0);

	waitKey(0);
	return(0);
}

//-----------------------------------【on_ThreshChange( )函数】------------------------------  
//      描述:回调函数
//----------------------------------------------------------------------------------------------  
void on_ThreshChange(int, void*)
{

	// 用Canny算子检测边缘
	Canny(g_grayImage, g_cannyMat_output, g_nThresh, g_nThresh * 2, 3);

	// 寻找轮廓
	findContours(g_cannyMat_output, g_vContours, g_vHierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

	// 绘出轮廓
	Mat drawing = Mat::zeros(g_cannyMat_output.size(), CV_8UC3);
	for (int i = 0; i < g_vContours.size(); i++)
	{
		Scalar color = Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255));//任意值
		drawContours(drawing, g_vContours, i, color, 2, 8, g_vHierarchy, 0, Point());
	}

	// 显示效果图
	imshow(WINDOW_NAME2, drawing);
}

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第3张图片

二、寻找物体的凸包

给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它是能包含点集中所有点的。

void convexHull(InputArray points,OutputArray hull,bool clockwise=flase,bool returnPoints=true)
//第一个参数:输入的二维点集;第二个参数:找到的凸包;第三个参数:标识符为真时,顺时针方向;第四个参数:操作标识符;
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include 

using namespace cv;
using namespace std;

#define WINDOW_NAME1 "【原始图窗口】"	//为窗口标题定义的宏 
#define WINDOW_NAME2 "【效果图窗口】"	//为窗口标题定义的宏 

Mat g_srcImage; Mat g_grayImage;
int g_nThresh = 50;
int g_maxThresh = 255;
RNG g_rng(12345);//产生随机数
Mat srcImage_copy = g_srcImage.clone();
Mat g_thresholdImage_output;
vector<vector<Point> > g_vContours;
vector<Vec4i> g_vHierarchy;

void on_ThreshChange(int, void*);
void ShowHelpText();

int main()
{
	// 加载源图像
	g_srcImage = imread("1.jpg", 1);

	// 将原图转换成灰度图并进行模糊降
	cvtColor(g_srcImage, g_grayImage, COLOR_BGR2GRAY);
	blur(g_grayImage, g_grayImage, Size(3, 3));

	// 创建原图窗口并显示
	namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);
	imshow(WINDOW_NAME1, g_srcImage);

	//创建滚动条
	createTrackbar(" 阈值:", WINDOW_NAME1, &g_nThresh, g_maxThresh, on_ThreshChange);
	on_ThreshChange(0, 0);//调用一次进行初始化

	waitKey(0);
	return(0);
}

//-----------------------------------【thresh_callback( )函数】----------------------------------  
//      描述:回调函数
//----------------------------------------------------------------------------------------------  
void on_ThreshChange(int, void*)
{
	// 对图像进行二值化,控制阈值
	threshold(g_grayImage, g_thresholdImage_output, g_nThresh, 255, THRESH_BINARY);

	// 寻找轮廓
	findContours(g_thresholdImage_output, g_vContours, g_vHierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

	// 遍历每个轮廓,寻找其凸包
	vector<vector<Point> >hull(g_vContours.size());
	for (unsigned int i = 0; i < g_vContours.size(); i++)
	{
		convexHull(Mat(g_vContours[i]), hull[i], false);
	}

	// 绘出轮廓及其凸包
	Mat drawing = Mat::zeros(g_thresholdImage_output.size(), CV_8UC3);
	for (unsigned int i = 0; i < g_vContours.size(); i++)
	{
		Scalar color = Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255));
		drawContours(drawing, g_vContours, i, color, 1, 8, vector<Vec4i>(), 0, Point());
		drawContours(drawing, hull, i, color, 1, 8, vector<Vec4i>(), 0, Point());
	}

	// 显示效果图
	imshow(WINDOW_NAME2, drawing);
}

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第4张图片

三、使用多边形将轮廓包围

Rect boundingRect(InputArray points)//对于指定点集,返回外部矩形边界
RotatedRect minAreaRect(InputArray points)//对于指定点集,寻找可旋转的最小面积的包围矩形
Void minEnclosingCircle(InputArray points,Point2f& center,float& radius)//对于指定点集,寻找最小面积的可包围圆形
RotatedRect fitEllipse(InputArray points)//用椭圆拟合二维点集
Void approxPolyDP(InputArray curve,OutputArray approxCurve,double epsilon,bool closed)//第一个参数:输入的二维点集;第二个参数:多边形逼近结果;第三个参数:逼近的精度;第四个参数:真为封闭曲线。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;

#define WINDOW_NAME1 "【原始图窗口】"        //为窗口标题定义的宏 
#define WINDOW_NAME2 "【效果图窗口】"        //为窗口标题定义的宏 

Mat g_srcImage;
Mat g_grayImage;
int g_nThresh = 50;//阈值
int g_nMaxThresh = 255;//阈值最大值
RNG g_rng(12345);//随机数生成器

void on_ContoursChange(int, void*);

int main()
{
	//【1】载入3通道的原图像
	g_srcImage = imread("1.jpg", 1);
	if (!g_srcImage.data) { printf("读取图片错误,请确定目录下是否有imread函数指定的图片存在~! \n"); return false; }

	//【2】得到原图的灰度图像并进行平滑
	cvtColor(g_srcImage, g_grayImage, COLOR_BGR2GRAY);
	blur(g_grayImage, g_grayImage, Size(3, 3));

	//【3】创建原始图窗口并显示
	namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);
	imshow(WINDOW_NAME1, g_srcImage);

	//【4】设置滚动条并调用一次回调函数
	createTrackbar(" 阈值:", WINDOW_NAME1, &g_nThresh, g_nMaxThresh, on_ContoursChange);
	on_ContoursChange(0, 0);

	waitKey(0);

	return(0);
}

//----------------------------【on_ContoursChange( )函数】---------------------------------
//      描述:回调函数
//-------------------------------------------------------------------------------------------------  
void on_ContoursChange(int, void*)
{
	//定义一些参数
	Mat threshold_output;
	vector<vector<Point>> contours;
	vector<Vec4i> hierarchy;

	// 使用Threshold检测边缘
	threshold(g_grayImage, threshold_output, g_nThresh, 255, THRESH_BINARY);

	// 找出轮廓
	findContours(threshold_output, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

	// 多边形逼近轮廓 + 获取矩形和圆形边界框
	vector<vector<Point> > contours_poly(contours.size());
	vector<Rect> boundRect(contours.size());
	vector<Point2f>center(contours.size());
	vector<float>radius(contours.size());

	//一个循环,遍历所有部分,进行本程序最核心的操作
	for (unsigned int i = 0; i < contours.size(); i++)
	{
		approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);//用指定精度逼近多边形曲线 
		boundRect[i] = boundingRect(Mat(contours_poly[i]));//计算点集的最外面(up-right)矩形边界
		minEnclosingCircle(contours_poly[i], center[i], radius[i]);//对给定的 2D点集,寻找最小面积的包围圆形 
	}

	// 绘制多边形轮廓 + 包围的矩形框 + 圆形框
	Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
	for (int unsigned i = 0; i < contours.size(); i++)
	{
		Scalar color = Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255));//随机设置颜色
		drawContours(drawing, contours_poly, i, color, 1, 8, vector<Vec4i>(), 0, Point());//绘制轮廓
		rectangle(drawing, boundRect[i].tl(), boundRect[i].br(), color, 2, 8, 0);//绘制矩形
		circle(drawing, center[i], (int)radius[i], color, 2, 8, 0);//绘制圆
	}

	// 显示效果图窗口
	namedWindow(WINDOW_NAME2, WINDOW_AUTOSIZE);
	imshow(WINDOW_NAME2, drawing);
}

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第5张图片

四、图像的矩

1.矩的计算

Moments moments(InputArray array,bool binaryImage=false)//第二个参数:若为真,则所有非0像素为1。

2.计算轮廓面积

double contourArea(InputArray contour,bool oriented=false)//第二个参数:若为真,该函数返回一个带符号的面积值,正负为轮廓的方向(顺、逆时针)。

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第6张图片

3.计算轮廓长度

double arcLength(InputArray curve,bool closed)//第二个参数:表示曲线的封闭情况)。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include 

using namespace cv;
using namespace std;

#define WINDOW_NAME1 "【原始图】"					//为窗口标题定义的宏 
#define WINDOW_NAME2 "【图像轮廓】"        //为窗口标题定义的宏 

Mat g_srcImage; Mat g_grayImage;
int g_nThresh = 100;
int g_nMaxThresh = 255;
RNG g_rng(12345);
Mat g_cannyMat_output;
vector<vector<Point> > g_vContours;
vector<Vec4i> g_vHierarchy;

void on_ThreshChange(int, void*);


int main(int argc, char** argv)
{
	// 读入原图像, 返回3通道图像数据
	g_srcImage = imread("1.jpg", 1);

	// 把原图像转化成灰度图像并进行平滑
	cvtColor(g_srcImage, g_grayImage, COLOR_BGR2GRAY);
	blur(g_grayImage, g_grayImage, Size(3, 3));

	// 创建新窗口
	namedWindow(WINDOW_NAME1, WINDOW_AUTOSIZE);
	imshow(WINDOW_NAME1, g_srcImage);

	//创建滚动条并进行初始化
	createTrackbar(" 阈值", WINDOW_NAME1, &g_nThresh, g_nMaxThresh,on_ThreshChange);
	on_ThreshChange(0, 0);

	waitKey(0);
	return(0);
}

//-----------------------------------【on_ThreshChange( )函数】-------------------------------
//		描述:回调函数
//-----------------------------------------------------------------------------------------------
void on_ThreshChange(int, void*)
{
	// 使用Canndy检测边缘
	Canny(g_grayImage, g_cannyMat_output, g_nThresh, g_nThresh * 2, 3);

	// 找到轮廓
	findContours(g_cannyMat_output, g_vContours, g_vHierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, Point(0, 0));

	// 计算矩
	vector<Moments> mu(g_vContours.size());
	for (unsigned int i = 0; i < g_vContours.size(); i++)
	{
		mu[i] = moments(g_vContours[i], false);
	}

	//  计算中心矩
	vector<Point2f> mc(g_vContours.size());
	for (unsigned int i = 0; i < g_vContours.size(); i++)
	{
		mc[i] = Point2f(static_cast<float>(mu[i].m10 / mu[i].m00), static_cast<float>(mu[i].m01 / mu[i].m00));
	}

	// 绘制轮廓
	Mat drawing = Mat::zeros(g_cannyMat_output.size(), CV_8UC3);
	for (unsigned int i = 0; i < g_vContours.size(); i++)
	{
		Scalar color = Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255));//随机生成颜色值
		drawContours(drawing, g_vContours, i, color, 2, 8, g_vHierarchy, 0, Point());//绘制外层和内层轮廓
		circle(drawing, mc[i], 4, color, -1, 8, 0);;//绘制圆
	}

	// 显示到窗口中
	namedWindow(WINDOW_NAME2, WINDOW_AUTOSIZE);
	imshow(WINDOW_NAME2, drawing);

	// 通过m00计算轮廓面积并且和OpenCV函数比较
	printf("\t 输出内容: 面积和轮廓长度\n");
	for (unsigned int i = 0; i < g_vContours.size(); i++)
	{
		printf(" >通过m00计算出轮廓[%d]的面积: (M_00) = %.2f \n OpenCV函数计算出的面积=%.2f , 长度: %.2f \n\n", i, mu[i].m00, contourArea(g_vContours[i]), arcLength(g_vContours[i], true));
		Scalar color = Scalar(g_rng.uniform(0, 255), g_rng.uniform(0, 255), g_rng.uniform(0, 255));
		drawContours(drawing, g_vContours, i, color, 2, 8, g_vHierarchy, 0, Point());
		circle(drawing, mc[i], 4, color, -1, 8, 0);
	}
}

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第7张图片

五、分水岭算法

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第8张图片

void watershed(InputArray image,InputOutputArray markers)
//第一个参数:输入图像;第二个参数:运算结果。
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include 
using namespace cv;
using namespace std;

#define WINDOW_NAME1 "【程序窗口1】"        //为窗口标题定义的宏 
#define WINDOW_NAME2 "【分水岭算法效果图】"        //为窗口标题定义的宏

Mat g_maskImage, g_srcImage;
Point prevPt(-1, -1);

static void on_Mouse(int event, int x, int y, int flags, void*);


//-----------------------------------【main( )函数】--------------------------------------------
//		描述:控制台应用程序的入口函数,我们的程序从这里开始执行
//-----------------------------------------------------------------------------------------------
int main(int argc, char** argv)
{	//【1】载入原图并显示,初始化掩膜和灰度图
	g_srcImage = imread("1.jpg", 1);
	imshow(WINDOW_NAME1, g_srcImage);
	Mat srcImage, grayImage;
	g_srcImage.copyTo(srcImage);
	cvtColor(g_srcImage, g_maskImage, COLOR_BGR2GRAY);
	cvtColor(g_maskImage, grayImage, COLOR_GRAY2BGR);
	g_maskImage = Scalar::all(0);

	//【2】设置鼠标回调函数
	setMouseCallback(WINDOW_NAME1, on_Mouse, 0);

	//【3】轮询按键,进行处理
	while (1)
	{
		//获取键值
		int c = waitKey(0);

		//若按键键值为ESC时,退出
		if ((char)c == 27)
			break;

		//按键键值为2时,恢复源图
		if ((char)c == '2')
		{
			g_maskImage = Scalar::all(0);
			srcImage.copyTo(g_srcImage);
			imshow("image", g_srcImage);
		}

		//若检测到按键值为1或者空格,则进行处理
		if ((char)c == '1' || (char)c == ' ')
		{
			//定义一些参数
			int i, j, compCount = 0;
			vector<vector<Point> > contours;
			vector<Vec4i> hierarchy;

			//寻找轮廓
			findContours(g_maskImage, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE);

			//轮廓为空时的处理
			if (contours.empty())
				continue;

			//拷贝掩膜
			Mat maskImage(g_maskImage.size(), CV_32S);
			maskImage = Scalar::all(0);

			//循环绘制出轮廓
			for (int index = 0; index >= 0; index = hierarchy[index][0], compCount++)
				drawContours(maskImage, contours, index, Scalar::all(compCount + 1), -1, 8, hierarchy, INT_MAX);

			//compCount为零时的处理
			if (compCount == 0)
				continue;

			//生成随机颜色
			vector<Vec3b> colorTab;
			for (i = 0; i < compCount; i++)
			{
				int b = theRNG().uniform(0, 255);
				int g = theRNG().uniform(0, 255);
				int r = theRNG().uniform(0, 255);

				colorTab.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
			}

			//计算处理时间并输出到窗口中
			double dTime = (double)getTickCount();
			watershed(srcImage, maskImage);
			dTime = (double)getTickCount() - dTime;
			printf("\t处理时间 = %gms\n", dTime * 1000. / getTickFrequency());

			//双层循环,将分水岭图像遍历存入watershedImage中
			Mat watershedImage(maskImage.size(), CV_8UC3);
			for (i = 0; i < maskImage.rows; i++)
				for (j = 0; j < maskImage.cols; j++)
				{
					int index = maskImage.at<int>(i, j);
					if (index == -1)
						watershedImage.at<Vec3b>(i, j) = Vec3b(255, 255, 255);
					else if (index <= 0 || index > compCount)
						watershedImage.at<Vec3b>(i, j) = Vec3b(0, 0, 0);
					else
						watershedImage.at<Vec3b>(i, j) = colorTab[index - 1];
				}

			//混合灰度图和分水岭效果图并显示最终的窗口
			watershedImage = watershedImage * 0.5 + grayImage * 0.5;
			imshow(WINDOW_NAME2, watershedImage);
		}
	}

	return 0;
}


//-----------------------------------【onMouse( )函数】---------------------------------------
//		描述:鼠标消息回调函数
//-----------------------------------------------------------------------------------------------
static void on_Mouse(int event, int x, int y, int flags, void*)
{
	//处理鼠标不在窗口中的情况
	if (x < 0 || x >= g_srcImage.cols || y < 0 || y >= g_srcImage.rows)
		return;

	//处理鼠标左键相关消息
	if (event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON))
		prevPt = Point(-1, -1);
	else if (event == EVENT_LBUTTONDOWN)
		prevPt = Point(x, y);

	//鼠标左键按下并移动,绘制出白色线条
	else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
	{
		Point pt(x, y);
		if (prevPt.x < 0)
			prevPt = pt;
		line(g_maskImage, prevPt, pt, Scalar::all(255), 5, 8, 0);
		line(g_srcImage, prevPt, pt, Scalar::all(255), 5, 8, 0);
		prevPt = pt;
		imshow(WINDOW_NAME1, g_srcImage);
	}
}

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第9张图片

六、图像修补

void inpaint(InputArray src,InputArray inpaintMask,OutputArray dst,double inpaintRadius, int flags)
//第一个参数:输入图像;第二个参数:修复掩膜,非零像素为修补区域;第三个参数:输出图像;第四个参数:每个修补点的圆形邻域;第五个参数:修补方法的标识符。

2022-6-1:OpenCV入门(九)imgproc组件学习之五——图像轮廓和图像分割_第10张图片

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/photo/photo.hpp"
#include 
using namespace cv;
using namespace std;

#define WINDOW_NAME0 "【原始图参考】"        //为窗口标题定义的宏 
#define WINDOW_NAME1 "【原始图】"        //为窗口标题定义的宏 
#define WINDOW_NAME2 "【修补后的效果图】"        //为窗口标题定义的宏 

Mat srcImage0, srcImage1, inpaintMask;
Point previousPoint(-1, -1);//原来的点坐标

//-----------------------------------【On_Mouse( )函数】--------------------------------
//          描述:响应鼠标消息的回调函数
//----------------------------------------------------------------------------------------------
static void On_Mouse(int event, int x, int y, int flags, void*)
{
	//鼠标左键弹起消息
	if (event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON))
		previousPoint = Point(-1, -1);
	//鼠标左键按下消息
	else if (event == EVENT_LBUTTONDOWN)
		previousPoint = Point(x, y);
	//鼠标按下并移动,进行绘制
	else if (event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON))
	{
		Point pt(x, y);
		if (previousPoint.x < 0)
			previousPoint = pt;
		//绘制白色线条
		line(inpaintMask, previousPoint, pt, Scalar::all(255), 5, 8, 0);
		line(srcImage1, previousPoint, pt, Scalar::all(255), 5, 8, 0);
		previousPoint = pt;
		imshow(WINDOW_NAME1, srcImage1);
	}
}

int main(int argc, char** argv)
{
	//载入原始图并进行掩膜的初始化
	Mat srcImage = imread("1.jpg", -1);
	if (!srcImage.data) { printf("读取图片错误,请确定目录下是否有imread函数指定图片存在~! \n"); return false; }
	srcImage0 = srcImage.clone();
	srcImage1 = srcImage.clone();
	inpaintMask = Mat::zeros(srcImage1.size(), CV_8U);

	//显示原始图参考
	imshow(WINDOW_NAME0, srcImage0);
	//显示原始图
	imshow(WINDOW_NAME1, srcImage1);
	//设置鼠标回调消息
	setMouseCallback(WINDOW_NAME1, On_Mouse, 0);

	//轮询按键,根据不同的按键进行处理
	while (1)
	{
		//获取按键键值
		char c = (char)waitKey();

		//键值为ESC,程序退出
		if (c == 27)
			break;

		//键值为2,恢复成原始图像
		if (c == '2')
		{
			inpaintMask = Scalar::all(0);
			srcImage.copyTo(srcImage1);
			imshow(WINDOW_NAME1, srcImage1);
		}

		//键值为1或者空格,进行图像修补操作
		if (c == '1' || c == ' ')
		{
			Mat inpaintedImage;
			inpaint(srcImage1, inpaintMask, inpaintedImage, 3, INPAINT_TELEA);
			imshow(WINDOW_NAME2, inpaintedImage);
		}
	}

	return 0;
}

你可能感兴趣的:(OpenCV学习,opencv,计算机视觉,c++)