本篇文章主要对线性代数的基础内容——矩阵、行列式、线性方程组、线性空间等内容进行整理,水平有限仅供参考。
1. 分块矩阵以及其运算性质
分块矩阵即将原矩阵按行(或列)进行分块,使得原方程的表示更为简洁,并且有助于简化运算。
1. 加法及数乘
- 条件:对于矩阵 A A A, B B B,保证其分块方式相同
- 加法性质 A + B = [ A i j + B i j ] A + B = [A_{ij} + B_{ij}] A+B=[Aij+Bij]
- 数乘性质 k A = [ k A i j ] kA = [kA_{ij}] kA=[kAij]
2. 转置(permutation)
若对于矩阵 A A A有
A = [ A 11 A 12 ⋯ A 1 n A 21 A 22 ⋯ A 2 n ⋮ ⋮ ⋱ ⋮ A n 1 A n 2 ⋯ A n n ] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \\ \end{bmatrix} A=⎣⎢⎢⎢⎡A11A21⋮An1A12A22⋮An2⋯⋯⋱⋯A1nA2n⋮Ann⎦⎥⎥⎥⎤则
A T = [ A 11 T A 21 T ⋯ A n 1 T A 12 A 22 ⋯ A n 2 T ⋮ ⋮ ⋱ ⋮ A 1 n T A 2 n T ⋯ A n n T ] A^T = \begin{bmatrix} A_{11}^T & A_{21}^T & \cdots & A_{n1}^T \\ A_{12} & A_{22} & \cdots & A_{n2}^T \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n}^T & A_{2n}^T & \cdots & A_{nn}^T \\ \end{bmatrix} AT=⎣⎢⎢⎢⎡A11TA12⋮A1nTA21TA22⋮A2nT⋯⋯⋱⋯An1TAn2T⋮AnnT⎦⎥⎥⎥⎤
3. 分块矩阵乘法
- 条件:矩阵 A A A对列的分法(相当于在不同间隔的列之间插入“竖线段”)与矩阵 B B B对行的分法(相当于在不同间隔的行之间插入“横线段”)
- 若
A = [ A 11 A 12 ⋯ A 1 t A 21 A 22 ⋯ A 2 t ⋮ ⋮ ⋱ ⋮ A t 1 A t 2 ⋯ A t t ] B = [ B 11 B 12 ⋯ B 1 p B 21 B 22 ⋯ B 2 p ⋮ ⋮ ⋱ ⋮ B p 1 B p 2 ⋯ B p p ] A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1t} \\ A_{21} & A_{22} & \cdots & A_{2t} \\ \vdots & \vdots & \ddots & \vdots \\ A_{t1} & A_{t2} & \cdots & A_{tt} \\ \end{bmatrix} \quad B = \begin{bmatrix} B_{11} & B_{12} & \cdots & B_{1p} \\ B_{21} & B_{22} & \cdots & B_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ B_{p1} & B_{p2} & \cdots & B_{pp} \\ \end{bmatrix} A=⎣⎢⎢⎢⎡A11A21⋮At1A12A22⋮At2⋯⋯⋱⋯A1tA2t⋮Att⎦⎥⎥⎥⎤B=⎣⎢⎢⎢⎡B11B21⋮Bp1B12B22⋮Bp2⋯⋯⋱⋯B1pB2p⋮Bpp⎦⎥⎥⎥⎤则
A B = [ C 11 C 12 ⋯ C 1 n C 21 C 22 ⋯ C 2 n ⋮ ⋮ ⋱ ⋮ C n 1 C n 2 ⋯ C n n ] AB = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{1n} \\ C_{21} & C_{22} & \cdots & C_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ C_{n1} & C_{n2} & \cdots & C_{nn} \\ \end{bmatrix} AB=⎣⎢⎢⎢⎡C11C21⋮Cn1C12C22⋮Cn2⋯⋯⋱⋯C1nC2n⋮Cnn⎦⎥⎥⎥⎤
其中 C i j = A i 1 B i 1 + A i 2 B i 2 + . . . + A i t B i j C_{ij} = A_{i1}B_{i1} + A_{i2}B_{i2} + ... + A_{it}B_{ij} Cij=Ai1Bi1+Ai2Bi2+...+AitBij
4. 分块求逆
若 A = d i a g ( A 1 , A 2 , . . . , A s ) A = {\rm diag}(A_1, A_2, ..., A_s) A=diag(A1,A2,...,As)则 A − 1 = d i a g ( A 1 − 1 , A 2 − 1 , . . . , A n − 1 ) A^{-1} = {\rm diag}(A_1^{-1}, A_2^{-1}, ..., A_n^{-1}) A−1=diag(A1−1,A2−1,...,An−1)
对于次对角矩阵
A = [ O ⋯ O A 1 O ⋯ A 2 O ⋮ ⋮ ⋮ A s ⋯ O O ] A = \begin{bmatrix} O & \cdots & O & A_1 \\ O & \cdots & A_2 & O \\ \vdots & \quad & \vdots & \vdots \\ A_s & \cdots & O & O \\ \end{bmatrix} A=⎣⎢⎢⎢⎡OO⋮As⋯⋯⋯OA2⋮OA1O⋮O⎦⎥⎥⎥⎤则有
A − 1 = [ O O ⋯ A s − 1 ⋮ ⋮ ⋮ O A 2 − 1 ⋯ O A 1 − 1 O ⋯ O ] A^{-1} = \begin{bmatrix} O & O & \cdots & A_s^{-1} \\ \vdots & \vdots & \quad & \vdots \\ O & A_2^{-1} & \cdots & O \\ A_1^{-1} & O & \cdots& O \\ \end{bmatrix} A−1=⎣⎢⎢⎢⎡O⋮OA1−1O⋮A2−1O⋯⋯⋯As−1⋮OO⎦⎥⎥⎥⎤
2. 对角矩阵的一些性质
设 A = d i a g ( A 1 , A 2 , . . . , A s ) A = {\rm diag}(A_1, A_2, ..., A_s) A=diag(A1,A2,...,As), B = d i a g ( B 1 , B 2 , . . . , B s ) B = {\rm diag}(B_1, B_2, ..., B_s) B=diag(B1,B2,...,Bs), 则有
- A B = d i a g ( A 1 B 1 , A 2 B 2 , . . . , A s B s ) AB = {\rm diag}(A_1B_1, A_2B_2, ..., A_sB_s) AB=diag(A1B1,A2B2,...,AsBs)
- A m = d i a g ( A 1 m , A 2 m , . . . , A s m ) A^m = {\rm diag}(A_1^m, A_2^m, ..., A_s^m) Am=diag(A1m,A2m,...,Asm)
- ∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ ⋯ ∣ A s ∣ |A| = |A_1||A_2|\cdots|A_s| ∣A∣=∣A1∣∣A2∣⋯∣As∣
- A − 1 = d i a g ( A 1 − 1 , A 2 − 1 , . . . , A n − 1 ) A^{-1} = {\rm diag}(A_1^{-1}, A_2^{-1}, ..., A_n^{-1}) A−1=diag(A1−1,A2−1,...,An−1)
3. 可逆矩阵(Invertable matrix)
D e f : Def: Def: 对于矩阵 A A A,若存在一个矩阵 A − 1 A^{-1} A−1,使得
A A − 1 = A − 1 A = E AA^{-1} = A^{-1}A = E AA−1=A−1A=E
则称 A A A为可逆矩阵, A − 1 A^{-1} A−1为A的逆矩阵
- 关于定义可以得知的事实:逆矩阵的逆为原矩阵,地位可以交换。并且可逆矩阵必为方阵。而且矩阵的逆矩阵必定是唯一的。
求逆矩阵的方法、判断可逆的方法
定理 \quad 设 A A A为 n ( n > 1 ) n(n>1) n(n>1) 阶方阵,则 A A A可逆的充分必要条件是 ∣ A ∣ ≠ 0 |A| \neq 0 ∣A∣=0,并且当 A A A可逆时,其逆矩阵为
A − 1 = 1 ∣ A ∣ A ∗ A^{-1} = \frac{1}{|A|}A^* A−1=∣A∣1A∗
可逆矩阵具有的一些性质
- ∣ A − 1 ∣ = 1 ∣ A ∣ |A^{-1}| = \frac{1}{|A|} ∣A−1∣=∣A∣1
- ( A T ) − 1 = ( A − 1 ) T (A^T)^{-1} = (A^{-1})^T (AT)−1=(A−1)T
- ( k A ) − 1 = k − 1 A − 1 (kA)^{-1} = k^{-1}A^{-1} (kA)−1=k−1A−1
- ( A B ) − 1 = B − 1 A − 1 (AB)^{-1} = B^{-1}A^{-1} (AB)−1=B−1A−1
- 对于初等矩阵,有 E [ i ( k ) ] − 1 = E [ i ( k − 1 ) ] E[i(k)]^{-1} = E[i(k^{-1})] E[i(k)]−1=E[i(k−1)], E [ i + j ( k ) ] − 1 = E [ i + j ( − k ) ] E[i + j(k)]^{-1} = E[i + j(-k)] E[i+j(k)]−1=E[i+j(−k)], E [ i , j ] − 1 = E [ i , j ] E[i, j]^{-1} = E[i, j] E[i,j]−1=E[i,j]
4. 关于可交换性(switchable)
当矩阵 A A A与 B B B满足可交换性时,则必有
- ( A B ) k = A k B k (AB)^k = A^kB^k (AB)k=AkBk
- ( A + B ) k (A + B)^k (A+B)k 满足二项式定理