提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
最常见的,二叉树的列构造问题一般都会用到分解问题的思维模式。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSameTree(TreeNode p, TreeNode q) {
if(p == null && q == null){
return true;
}
if(p == null || q == null){
return false;
}
if(p.val != q.val){
return false;
}
return isSameTree(p.left,q.left) && isSameTree(p.right, q.right);
}
}
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode() {}
* ListNode(int val) { this.val = val; }
* ListNode(int val, ListNode next) { this.val = val; this.next = next; }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSubPath(ListNode head, TreeNode root) {
if(head == null){
return true;
}
if(root == null){
return false;
}
if(head.val == root.val){
if(fun(root,head)){
return true;
}
}
return isSubPath(head,root.left) || isSubPath(head,root.right);
}
public boolean fun(TreeNode root, ListNode head){
if(head == null){
return true;
}
if(root == null){
return false;
}
if(root.val != head.val){
return false;
}
return fun(root.left, head.next) || fun(root.right, head.next);
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode buildTree(int[] preorder, int[] inorder) {
return fun(preorder,inorder, 0,preorder.length-1,0,inorder.length-1);
}
public TreeNode fun(int[] preorder, int[] inorder, int preLow,int preHigh, int inLow,int inHigh){
if(preLow > preHigh){
return null;
}
TreeNode cur = new TreeNode(preorder[preLow]);
int index = 0, len = 0;
for(int i = inLow; i <= inHigh; i ++){
if(inorder[i] == preorder[preLow]){
index = i;
len = index - inLow;
break;
}
}
cur.left = fun(preorder,inorder,preLow+1,preLow+len,inLow,index-1);
cur.right = fun(preorder,inorder,preLow+len+1,preHigh,index+1,inHigh);
return cur;
}
}
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode constructMaximumBinaryTree(int[] nums) {
return fun(nums,0, nums.length-1);
}
public TreeNode fun(int[] nums, int low, int high){
if(low > high){
return null;
}
int index = low;
for(int i = low; i <= high; i ++){
index = nums[i] > nums[index] ? i:index;
}
TreeNode cur = new TreeNode(nums[index]);
cur.left = fun(nums,low, index-1);
cur.right = fun(nums,index+1,high);
return cur;
}
}