检查列表中是否存在值的最快方法

知道列表中是否存在值(列表中包含数百万个值)及其索引是什么的最快方法是什么?

我知道列表中的所有值都是唯一的,如本例所示。

我尝试的第一种方法是(在我的实际代码中为3.8秒):

a = [4,2,3,1,5,6]

if a.count(7) == 1:
    b=a.index(7)
    "Do something with variable b"

我尝试的第二种方法是(速度提高了2倍:实际代码为1.9秒):

a = [4,2,3,1,5,6]

try:
    b=a.index(7)
except ValueError:
    "Do nothing"
else:
    "Do something with variable b"

堆栈溢出用户建议的方法(我的实际代码为2.74秒):

a = [4,2,3,1,5,6]
if 7 in a:
    a.index(7)

在我的真实代码中,第一种方法耗时3.81秒,第二种方法耗时1.88秒。 这是一个很好的改进,但是:

我是使用Python /脚本的初学者,有没有更快的方法来做相同的事情并节省更多的处理时间?

我的应用程序更具体的说明:

在Blender API中,我可以访问粒子列表:

particles = [1, 2, 3, 4, etc.]

从那里,我可以访问粒子的位置:

particles[x].location = [x,y,z]

对于每个粒子,我通过搜索每个粒子位置来测试是否存在邻居:

if [x+1,y,z] in particles.location
    "Find the identity of this neighbour particle in x:the particle's index
    in the array"
    particles.index([x+1,y,z])

#1楼

这不是代码,而是用于快速搜索的算法。

如果您要查找的列表和值都是数字,那么这很简单。 如果是字符串:请看底部:

  • -让“ n”为列表的长度
  • -可选步骤:如果需要元素索引,请向列表中添加第二列,其中元素的当前索引为(0至n-1)-稍后请参见
  • 订购列表或列表的副本(.sort())
  • 依次通过:
    • 将您的数字与列表的第n / 2个元素进行比较
      • 如果更大,则在索引n / 2-n之间再次循环
      • 如果较小,则在索引0-n / 2之间再次循环
      • 如果相同:您找到了
  • 不断缩小列表的范围,直到找到它或只有2个数字(在您要查找的数字的下方和上方)
  • 这将在最多19个步骤中找到1.000.000列表中的任何元素(准确地说是log(2)n)

如果您还需要号码的原始位置,请在第二个索引列中查找。

如果您的列表不是由数字组成的,则该方法仍然有效并且将是最快的,但是您可能需要定义一个可以比较/排序字符串的函数。

当然,这需要sorted()方法的投资,但是如果您继续重复使用同一列表进行检查,则可能值得这样做。


#2楼

听起来您的应用程序可能会受益于使用Bloom Filter数据结构的优势。

简而言之,布隆过滤器查询可以很快告诉您集合中是否绝对没有值。 否则,您可以进行较慢的查找,以获取列表中可能存在的值的索引。 因此,如果您的应用程序倾向于比“已找到”结果更频繁地获得“未找到”结果,则可以通过添加Bloom Filter来加快速度。

有关详细信息,Wikipedia很好地概述了布隆过滤器的工作方式,并且对“ python布隆过滤器库”的网络搜索将至少提供一些有用的实现。


#3楼

正如其他人所述,对于大型列表, in可能会非常慢。 这是insetbisect的性能比较。 请注意时间(以秒为单位)是对数刻度。

测试代码:

import random
import bisect
import matplotlib.pyplot as plt
import math
import time

def method_in(a,b,c):
    start_time = time.time()
    for i,x in enumerate(a):
        if x in b:
            c[i] = 1
    return(time.time()-start_time)   

def method_set_in(a,b,c):
    start_time = time.time()
    s = set(b)
    for i,x in enumerate(a):
        if x in s:
            c[i] = 1
    return(time.time()-start_time)

def method_bisect(a,b,c):
    start_time = time.time()
    b.sort()
    for i,x in enumerate(a):
        index = bisect.bisect_left(b,x)
        if index < len(a):
            if x == b[index]:
                c[i] = 1
    return(time.time()-start_time)

def profile():
    time_method_in = []
    time_method_set_in = []
    time_method_bisect = []

    Nls = [x for x in range(1000,20000,1000)]
    for N in Nls:
        a = [x for x in range(0,N)]
        random.shuffle(a)
        b = [x for x in range(0,N)]
        random.shuffle(b)
        c = [0 for x in range(0,N)]

        time_method_in.append(math.log(method_in(a,b,c)))
        time_method_set_in.append(math.log(method_set_in(a,b,c)))
        time_method_bisect.append(math.log(method_bisect(a,b,c)))

    plt.plot(Nls,time_method_in,marker='o',color='r',linestyle='-',label='in')
    plt.plot(Nls,time_method_set_in,marker='o',color='b',linestyle='-',label='set')
    plt.plot(Nls,time_method_bisect,marker='o',color='g',linestyle='-',label='bisect')
    plt.xlabel('list size', fontsize=18)
    plt.ylabel('log(time)', fontsize=18)
    plt.legend(loc = 'upper left')
    plt.show()

#4楼

对我来说,这是0.030秒(实际),0.026秒(用户)和0.004秒(系统)。

try:
print("Started")
x = ["a", "b", "c", "d", "e", "f"]

i = 0

while i < len(x):
    i += 1
    if x[i] == "e":
        print("Found")
except IndexError:
    pass

#5楼

请注意, in运算符不仅测试相等性( == ),还测试身份( is ), list s的in逻辑大致等效于以下内容(它实际上是用C而不是Python编写的,至少是在CPython中编写的):

 for element in s: if element is target: # fast check for identity implies equality return True if element == target: # slower check for actual equality return True return False 

在大多数情况下,这个细节是无关紧要的,但是在某些情况下,它可能会使Python新手感到惊讶,例如numpy.NAN具有不等于自身的不寻常特性:

>>> import numpy
>>> numpy.NAN == numpy.NAN
False
>>> numpy.NAN is numpy.NAN
True
>>> numpy.NAN in [numpy.NAN]
True

要区分这些异常情况,可以使用any()

>>> lst = [numpy.NAN, 1 , 2]
>>> any(element == numpy.NAN for element in lst)
False
>>> any(element is numpy.NAN for element in lst)
True 

请注意,使用any() listin逻辑为:

any(element is target or element == target for element in lst)

但是,我要强调的是,这是一个极端的情况, in绝大多数情况下, in运算符都是经过高度优化的,这正是您想要的(当然是listset )。


#6楼

present = False
searchItem = 'd'
myList = ['a', 'b', 'c', 'd', 'e']
if searchItem in myList:
   present = True
   print('present = ', present)
else:
   print('present = ', present)

#7楼

检查乘积等于k的数组中是否存在两个元素的代码:

n = len(arr1)
for i in arr1:
    if k%i==0:
        print(i)

#8楼

或使用__contains__

sequence.__contains__(value)

演示:

>>> l=[1,2,3]
>>> l.__contains__(3)
True
>>> 

#9楼

@Winston Ewert的解决方案极大地提高了非常大的列表的速度,但是这个stackoverflow答案表明,如果经常到达除外分支,则try:/ except:/ else:构造将变慢。 另一种方法是将.get()方法用于dict:

a = [4,2,3,1,5,6]

index = dict((y, x) for x, y in enumerate(a))

b = index.get(7, None)
if b is not None:
    "Do something with variable b"

.get(key, default)方法仅适用于无法保证键会包含在字典中的情况。 如果项存在 ,则返回值(如将dict[key] ),但是当它不是, .get()返回默认值(此处None )。 你需要确保在这种情况下所选择的默认不会是a


#10楼

这对我有用:(列表理解,单线)

[list_to_search_in.index(i) for i in list_from_which_to_search if i in list_to_search_in]

我有一个包含所有项目的list_to_search_in ,并且想要返回list_from_which_to_search中的项目索引。

这将在一个不错的列表中返回索引。


#11楼

最初的问题是:

知道列表中是否存在值(列表中包含数百万个值)及其索引是什么的最快方法是什么?

因此,有两件事要找到:

  1. 是列表中的一项,并且
  2. 什么是索引(如果在列表中)。

为此,我修改了@xslittlegrass代码以在所有情况下计算索引,并添加了其他方法。

结果

方法是:

  1. in-基本上如果b中的x:返回b.index(x)
  2. try--try / catch on b.index(x)(跳过必须检查b中的x)
  3. set-基本上,如果x在set(b)中:返回b.index(x)
  4. bisect-用索引对其b进行排序,对sorted(b)中的x进行二进制搜索。 注意@xslittlegrass的mod,它返回排序后的b中的索引,而不是原始b)
  5. 反向-为b形成字典d的反向循环; 则d [x]提供x的索引。

结果表明,方法5最快。

有趣的是, tryset方法在时间上是等效的。


测试代码

import random
import bisect
import matplotlib.pyplot as plt
import math
import timeit
import itertools

def wrapper(func, *args, **kwargs):
    " Use to produced 0 argument function for call it"
    # Reference https://www.pythoncentral.io/time-a-python-function/
    def wrapped():
        return func(*args, **kwargs)
    return wrapped

def method_in(a,b,c):
    for i,x in enumerate(a):
        if x in b:
            c[i] = b.index(x)
        else:
            c[i] = -1
    return c

def method_try(a,b,c):
    for i, x in enumerate(a):
        try:
            c[i] = b.index(x)
        except ValueError:
            c[i] = -1

def method_set_in(a,b,c):
    s = set(b)
    for i,x in enumerate(a):
        if x in s:
            c[i] = b.index(x)
        else:
            c[i] = -1
    return c

def method_bisect(a,b,c):
    " Finds indexes using bisection "

    # Create a sorted b with its index
    bsorted = sorted([(x, i) for i, x in enumerate(b)], key = lambda t: t[0])

    for i,x in enumerate(a):
        index = bisect.bisect_left(bsorted,(x, ))
        c[i] = -1
        if index < len(a):
            if x == bsorted[index][0]:
                c[i] = bsorted[index][1]  # index in the b array

    return c

def method_reverse_lookup(a, b, c):
    reverse_lookup = {x:i for i, x in enumerate(b)}
    for i, x in enumerate(a):
        c[i] = reverse_lookup.get(x, -1)
    return c

def profile():
    Nls = [x for x in range(1000,20000,1000)]
    number_iterations = 10
    methods = [method_in, method_try, method_set_in, method_bisect, method_reverse_lookup]
    time_methods = [[] for _ in range(len(methods))]

    for N in Nls:
        a = [x for x in range(0,N)]
        random.shuffle(a)
        b = [x for x in range(0,N)]
        random.shuffle(b)
        c = [0 for x in range(0,N)]

        for i, func in enumerate(methods):
            wrapped = wrapper(func, a, b, c)
            time_methods[i].append(math.log(timeit.timeit(wrapped, number=number_iterations)))

    markers = itertools.cycle(('o', '+', '.', '>', '2'))
    colors = itertools.cycle(('r', 'b', 'g', 'y', 'c'))
    labels = itertools.cycle(('in', 'try', 'set', 'bisect', 'reverse'))

    for i in range(len(time_methods)):
        plt.plot(Nls,time_methods[i],marker = next(markers),color=next(colors),linestyle='-',label=next(labels))

    plt.xlabel('list size', fontsize=18)
    plt.ylabel('log(time)', fontsize=18)
    plt.legend(loc = 'upper left')
    plt.show()

profile()

#12楼

7 in a

最清晰,最快的方法。

您还可以考虑使用set ,但是从列表中构造该set所花费的时间可能比更快的成员资格测试所节省的时间更多。 唯一可以确定的基准就是基准测试。 (这还取决于您需要执行哪些操作)


#13楼

您可以将您的物品放在一个set 。 集合查找非常有效。

尝试:

s = set(a)
if 7 in s:
  # do stuff

编辑在注释中,您说您想获取元素的索引。 不幸的是,集合没有元素位置的概念。 另一种方法是对列表进行预排序,然后在每次需要查找元素时使用二进制搜索 。


#14楼

def check_availability(element, collection: iter):
    return element in collection

用法

check_availability('a', [1,2,3,4,'a','b','c'])

我相信这是知道所选值是否在数组中的最快方法。


#15楼

a = [4,2,3,1,5,6]

index = dict((y,x) for x,y in enumerate(a))
try:
   a_index = index[7]
except KeyError:
   print "Not found"
else:
   print "found"

如果a不变,这将是一个好主意,因此我们可以做一次dict()部分,然后重复使用它。 如果确实发生变化,请提供您正在做的更多详细信息。

你可能感兴趣的:(python,performance,list)