数据结构-树-二叉树-堆的实现

1.树概念及结构

树是一种 非线性 的数据结构,它是由 n n>=0 )个有限结点组成一个具有层次关系的集合。 把它叫做树是因
为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的

  1. 有一个特殊的结点,称为根结点,根节点没有前驱结点
  2. 除根节点外,其余结点被分成M(M>0)个互不相交的集合T1T2……Tm,其中每一个集合Ti(1<= i
  3. <= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
  4. 因此,树是递归定义的。

注意:树形结构中,子树之间不能有交集,否则就不是树形结构 

数据结构-树-二叉树-堆的实现_第1张图片

 1.2 树的相关概念

 数据结构-树-二叉树-堆的实现_第2张图片

  1. 节点的度:一个节点含有的子树的个数称为该节点的度;如上图:A的为6
  2. 叶节点或终端节点:度为0的节点称为叶节点;如上图:BCHI...等节点为叶节点
  3. 非终端节点或分支节点:度不为0的节点;如上图:DEFG...等节点为分支节点
  4. 双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;如上图:AB的父节点
  5. 孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点;如上图:BA的孩子节点
  6. 兄弟节点:具有相同父节点的节点互称为兄弟节点;如上图:BC是兄弟节点
  7. 树的度:一棵树中,最大的节点的度称为树的度;如上图:树的度为6
  8. 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  9. 树的高度或深度:树中节点的最大层次;如上图:树的高度为4
  10. 堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:HI互为兄弟节点
  11. 节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先
  12. 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙
  13. 森林:由mm>0)棵互不相交的树的集合称为森林;

 1.3 树的表示

 树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,既然保存值域,也要保存结点和结点之间

的关系 ,实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法
等。我们这里就简单的了解其中最常用的 孩子兄弟表示法
typedefintDataType;structNode
{
structNode*_firstChild1;    // 第一个孩子结点
structNode*_pNextBrother;   // 指向其下一个兄弟结点
DataType_data;               // 结点中的数据域
};

数据结构-树-二叉树-堆的实现_第3张图片

 1.4 树在实际中的运用(表示文件系统的目录树结构)

 数据结构-树-二叉树-堆的实现_第4张图片

2.二叉树概念及结构

2.1概念

 一棵二叉树是结点的一个有限集合,该集合

1. 或者为空
2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成
数据结构-树-二叉树-堆的实现_第5张图片

 从上图可以看出:

1. 二叉树不存在度大于 2 的结点
2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:对于任意的二叉树都是由以下几种情况复合而成的:

 数据结构-树-二叉树-堆的实现_第6张图片

 2.2 特殊的二叉树

1. 满二叉树 :一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是
说,如果一个二叉树的层数为 K ,且结点总数是
,则它就是满二叉树。
2. 完全二叉树 :完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为 K
的,有 n 个结点的二叉树,当且仅当其每一个结点都与深度为 K 的满二叉树中编号从 1 n 的结点一一对
应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

 数据结构-树-二叉树-堆的实现_第7张图片

 2.3 二叉树的性质

1. 若规定根节点的层数为 1 ,则一棵非空二叉树的 i 层上最多有2^i-1
个结点 .
2. 若规定根节点的层数为 1 ,则 深度为 h 的二叉树的最大结点数是2^h   -1
.
3. 对任何一棵二叉树 , 如果度为 0 其叶结点个数为n0  , 度为 2 的分支结点个数为 n2 , 则有 n0=n2 + 1
4. 若规定根节点的层数为 1 ,具有 n 个结点的满二叉树的深度 h=log2 ^(n+1)
. (ps
log 2
为底, n+1 为对数 )
5. 对于具有 n 个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从 0 开始编号,则对
于序号为 i的结点有:
1. i>0 i 位置节点的双亲序号: (i-1)/2 i=0 i 为根节点编号,无双亲节点
2. 2i+1 ,左孩子序号: 2i+1 2i+1>=n 否则无左孩子
3. 2i+2 ,右孩子序号: 2i+2 2i+2>=n 否则无右孩子

 2.4 二叉树的存储结构

二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。
1. 顺序存储
顺序结构存储就是使用 数组来存储 ,一般使用数组 只适合表示完全二叉树 ,因为不是完全二叉树会有空 间的浪费。而现实中使用中只有堆才会使用数组来存储,关于堆我们后面的章节会专门讲解。二叉树顺 序存储在物理上是一个数组,在逻辑上是一颗二叉树。

 数据结构-树-二叉树-堆的实现_第8张图片

2. 链式存储
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是
链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所
在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链

数据结构-树-二叉树-堆的实现_第9张图片

3.二叉树的顺序结构及实现

3.1 二叉树的顺序结构

普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结 构存储。现实中我们通常把堆 ( 一种二叉树 ) 使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统
虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

 3.2 堆的概念及结构

用顺序表方式存储 小堆 ( 或大堆 ) 。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:
堆中某个节点的值总是不大于或不小于其父节点的值;
堆总是一棵完全二叉树
数据结构-树-二叉树-堆的实现_第10张图片

 4. 堆的实现

4.1 堆向下调整算法

现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整
成一个小堆。向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

数据结构-树-二叉树-堆的实现_第11张图片

 4.2堆的创建

下面我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算
法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的
子树开始调整,一直调整到根节点的树,就可以调整成堆。
数据结构-树-二叉树-堆的实现_第12张图片

 4.3 建堆时间复杂度

因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明 ( 时间复杂度本来看的
就是近似值,多几个节点不影响最终结果 )

数据结构-树-二叉树-堆的实现_第13张图片 4.4 堆的插入

先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。 

数据结构-树-二叉树-堆的实现_第14张图片

4.5 堆的删除  

删除堆是删除堆顶的数据,将堆顶的数据根最后一个数据一换,然后删除数组最后一个数据,再进行向下调
整算法。
数据结构-树-二叉树-堆的实现_第15张图片

typedef int HPDataType;
typedef struct Heap
{
 HPDataType* _a;
 int _size;
 int _capacity; 
}Heap;
// 堆的构建
void HeapCreate(Heap* hp, HPDataType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

 通过以上的代码详解,我们了解了基于数组实现的二叉树-堆的基本操作,包括初始化、销毁、入堆、出堆等操作,并深入探讨了如何通过上浮和下沉操作来维护堆的性质。这些操作使得堆成为一种高效的数据结构,特别适用于需要频繁获取最大或最小元素的场景。希望通过这篇博客,读者能够更加深入地理解二叉树-堆的实现原理。

你可能感兴趣的:(数据结构-基础知识,算法,数据结构)