- NFC碰一碰发视频源码高质量矩阵宣传视频,支持OEM
余~~18538162800
python开发语言音视频
一、引言在当今竞争激烈的商业环境中,创新的拓客方式对于企业的生存与发展至关重要。NFC(NearFieldCommunication)碰一碰技术的出现,为营销领域带来了新的机遇。结合视频传播的强大影响力,NFC碰一碰发视频拓客系统应运而生。本文将深入探讨该系统的源码搭建过程,并详细阐述如何实现对OEM(原始设备制造商)的支持,为开发者和企业提供一套全面的技术指南。二、系统架构设计(一)NFC交互层
- 《机器学习数学基础》补充资料:求解线性方程组的克拉默法则
CS创新实验室
机器学习数学基础机器学习人工智能机器学习数学基础
《机器学习数学基础》中并没有将解线性方程组作为重点,只是在第2章2.4.2节做了比较完整的概述。这是因为,如果用程序求解线性方程组,相对于高等数学教材中强调的手工求解,要简单得多了。本文是关于线性方程组的拓展,供对此有兴趣的读者阅读。1.线性方程组的解位于一条直线不失一般性,这里讨论三维空间的情况,对于多维空间,可以由此外推,毕竟三维空间便于想象和作图说明。设矩阵A=[124135]\pmb{A}
- Winograd 算法原理推导和python程序
weixin_47696437
算法python人工智能
一、算法背景Winograd算法是一种用于高效计算卷积的算法,其核心思想是通过减少乘法运算的次数来提高卷积计算的效率。在传统的卷积计算中,乘法运算的开销较大,而Winograd算法通过巧妙的变换,将卷积运算转化为在变换域中的矩阵乘法,从而减少乘法的数量,虽然会引入一些额外的加法和变换操作,但整体上在计算效率上有显著提升。二、一维卷积的Winograd推导2.Winograd优化通过多项式变换减少乘
- 【nvidia】NCCL禁用P2P后果权衡
x66ccff
linuxp2p服务器网络协议
通信bound还是计算bound?计算bound场景:模型参数量较小(如参数量未超出单卡显存容量,使用纯数据并行)或计算密度极高(如大batchsize下的矩阵运算)时,A100的计算能力(FP16/FP32算力)可能被充分利用,此时训练是计算bound。某些优化技术(如梯度累积、算子融合)可能掩盖通信开销,使计算成为主要瓶颈。通信bound场景:模型参数量极大(如千亿级以上),需采用模型并行或流
- Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
- Android15音频进阶之焦点仲裁矩阵(一百零七)
Android系统攻城狮
AndroidAudio工程师进阶系列音视频矩阵python
简介:CSDN博客专家、《Android系统多媒体进阶实战》一书作者新书发布:《Android系统多媒体进阶实战》优质专栏:Audio工程师进阶系列【原创干货持续更新中……】优质专栏:多媒体系统工程师系列【原创干货持续更新中……】优质视频课程:AAOS车载系统+AOSP14系统攻城狮入门视频实战课
- 用deepseek学大模型08-长短时记忆网络 (LSTM)
wyg_031113
lstm人工智能rnn
deepseek.com从入门到精通长短时记忆网络(LSTM),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。从入门到精通长短时记忆网络(LSTM)参考:长短时记忆网络(LSTM)在序列数据处理中的优缺点分析1.LSTM核心机制LSTM通过门控机制(遗忘门、输入门、输出门)和细
- 用deepseek学大模型08-卷积神经网络(CNN)
wyg_031113
机器学习人工智能
yuanbao.tencent.com从入门到精通卷积神经网络(CNN),着重介绍的目标函数,损失函数,梯度下降标量和矩阵形式的数学推导,pytorch真实能跑的代码案例以及模型,数据,预测结果的可视化展示,模型应用场景和优缺点,及如何改进解决及改进方法数据推导。一、目标函数与损失函数数学推导1.均方误差(MSE)标量形式:E(w)=12∑i=1N(yi−y^i)2E(\mathbf{w})=\f
- LeetCode 热题 100
TTXS123456789ABC
#BS_算法leetcode算法职场和发展
LeetCode热题1001.快速/归并排序快速排序归并排序2.动态规划_必考2.1多维动态规划_必考3.二叉树_必考4.链表_必考5.二分查找6.其他热门算法哈希双指针滑动窗口子串普通数组矩阵图论回溯栈堆贪心算法技巧踏踏实实连SQL几大题型。1.快速/归并排序,2.动态规划(背包爬楼),3.二叉树,4.链表反序,5.二分查找,6.其他杂七杂八(三数之和这种)。1.快速/归并排序快速排序归并排序2
- 一文读懂!深度学习 + PyTorch 的超实用学习路线
a小胡哦
深度学习pythonpytorch
深度学习作为人工智能领域的核心技术,正深刻改变着诸多行业。PyTorch则是深度学习实践中备受青睐的框架,它简单易用且功能强大。下面就为大家详细规划深度学习结合PyTorch的学习路线。一、基础知识储备数学基础数学是很重要的!!!线性代数、概率论与数理统计、微积分是深度学习的数学基石。熟悉矩阵运算、概率分布、梯度计算等概念,能帮助理解深度学习模型的原理。例如,在神经网络中,矩阵乘法用于神经元之间的
- Elasticsearch 技术分享
chao_dev
大数据elasticsearch
Elasticsearch技术分享文章目录Elasticsearch技术分享一,Elasticsearch基础介绍1.简介2.kibana3.基本概念4.索引的应用二,Elasticsearch聚合查询1.聚合的概念2.Metric(指标)聚合3.Bucket(桶)聚合4.Pipeline(管道)聚合5.Matrix(矩阵)聚合6.总结三,Elasticsearch索引别名Aliases1.业务问
- 力扣hot100_矩阵_python版本
Y1nhl
力扣leetcode矩阵python
73.矩阵置零给定一个mxn的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。classSolution:defsetZeroes(self,matrix:List[List[int]])->None:m,n=len(matrix),len(matrix[0])row,col=[False]*m,[False]*nforiinrange(m):forjinrange(n
- 聚焦云+AI产业前沿发展,国内首个智算云生态影响力矩阵即将发布
科技云报道
云计算AI人工智能云计算人工智能ai
当前,全球人工智能技术迅猛发展,已经成为世界科技强国重点布局的关键赛道。云计算与人工智能的结合正引领着数字时代的未来,两者的融合也呈现出日益紧密的趋势。随着人工智能产业呈现井喷式发展,智能算力逐渐成为算力结构的主要组成,传统的通用云计算正加速与智算融合,升级成为可服务于人工智能技术和应用发展的智算云,成为堪比云计算的黄金赛道。作为“云+AI”协同发展的产物,智算云以其泛在互联、云化共享、高效计算和
- Python实现前缀和
Syhaswm
python前缀和python开发语言
文章目录系列文章目录前言一、前缀和是什么?二、一维前缀和与二维前缀和三、前缀和应用场景四、实现前缀和的方法1.运用函数实现前缀和(包括求区间和)2.引入accumulate第三方库3.for循环总结前言在算法和数据结构的领域中,前缀和是一种极为实用且基础的算法思想。它能显著提升我们处理数组或矩阵相关问题的效率,将原本可能需要多次重复计算的过程优化为常数时间的操作。无论是在竞赛编程中,还是在实际的软
- 心理测评性格测试矩阵版h5微信抖音QQ快手小程序app开源版开发
云起SAAS
矩阵微信小程序
心理测评性格测试矩阵版h5微信抖音QQ快手小程序app开源版开发支持SAAS、支持独立加密、支持独立开源、价格不同。自带题库数据,后台一键初始,支持自己上传题目心理测评微信公众号微信小程序抖音小程序可打包APP支持单题、跳跃题、计分题、因子题、单选多选等99%题型这是一款什么软件?从智力、能力、人格、心理健康等各方面对个体进行全面的描述,从而确定其相对优势和不足。对心理从业者及人力资源从业者而言,
- Matlab 机器人 雅可比矩阵
CodingAlgo
算法
===工业机器人运动学与Matlab正逆解算法学习笔记(用心总结一文全会)(四)——雅可比矩阵_staubli机器人正逆向运动学实例验证matlab-CSDN博客===matlab求雅可比矩阵_六轴机械臂矢量积法求解雅可比矩阵-CSDN博客===(63封私信/80条消息)MATLAB机器人工具箱中机器人逆解是如何求出来的?-知乎===https://zhuanlan.zhihu.com/p/638
- 双目立体视觉(3.1)立体标定
2501_90596733
双目立体视觉计算机视觉python人工智能
在双目测距系统中,立体标定是至关重要的一步。其主要目的是求解双目相机的所有内外参数,这些参数的准确性直接关系到后续的效果,进而影响双目测距的精度。一、立体标定的重要性立体标定的核心目标是获取相机的内外参数。内参数包括焦距、主点坐标和畸变参数等,这些参数在相机制造完成后基本固定,无需频繁标定。外参数则包括旋转矩阵R和平移向量T,用于描述相机与场景之间的相对位置关系。通过标定,我们可以消除相机的畸变,
- 人工智障的软件开发-自动流水线CI/CD篇-docker+jenkins部署之道
Yuanymoon
人工智障2077系列devopsjenkinsci/cddockerjenkinsai
指令接收:「需要自动构建系统」系统检测:目标开发一个软件已完成代码仓库-轻盈的gitea,开始添加自动流水线启动应急冷却协议:准备承受Java系应用的资源冲击核心组件锁定:构建老将军Jenkins(虽然年迈但依然能战)需求分析:论碳基生物的认知进化人类需求翻译矩阵表层需求:“写一个软件”实际需求:“写代码并自动完成测试/打包/部署的流水线,最后自动部署一个系统哟”隐藏需求:“想要偷懒又不想承认的自
- ORB-SLAM3源码的学习:GeometricTools文件
PaLu-LvL
计算机视觉#ORB-SLAM3c++计算机视觉ubuntu人工智能学习
前言GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。1.头文件GeometricTools.h除了计算基础矩阵和三角化恢复三维点外,头文件中还提供了两种用于比较矩阵的模板函数。第一个函数用于比较一个OpenCV矩阵和一个Eigen矩阵,第二个函数用于比较两个
- 计算机视觉中图像的基础认知
全栈你个大西瓜
人工智能计算机视觉人工智能图像基本属性RGB三通道彩色单通道灰度图像OpenCVMatplotlib
第一章:计算机视觉中图像的基础认知第二章:计算机视觉:卷积神经网络(CNN)基本概念(一)第三章:计算机视觉:卷积神经网络(CNN)基本概念(二)第四章:搭建一个经典的LeNet5神经网络一、图像/视频的基本属性在计算机视觉中,图像和视频的本质是多维数值矩阵。图像或视频数据的一些基本属性。宽度(W)和高度(H)定义了图像的像素分辨率,单位通常是像素。例如,一张1920x1080的图像有1920列(
- 数据结构:图(存储结构:邻接矩阵,邻接表)
成分复杂选手
数据结构c++visualstudiocode
图的概念图是由两个集合V和E组成,记为G=(V,E),其中V是顶点的有穷非空集合,E是V中顶点偶对的有穷集合,这些顶点偶对称为边。图可分为有向图和无向图,有向图中顶点对是有序的,每条边都有起点和终点,称为从Vi到Vj的一条有向边;无向图的顶点对是无序的。图的存储结构图的存储结构有主要有邻接矩阵、邻接表、十字链表和邻接多重表,这里介绍邻接矩阵和邻接表两种方法。邻接矩阵表示法:邻接矩阵使用一个二维数组
- 图的存储结构:邻接矩阵和邻接表
Lee Neo
#数据结构数据结构
图graph顶点vertex弧arc弧尾tail弧头head有向图digraph边edge无向图undigraph权weight网network邻接点adjacent依附incident度degree出度OutDegree入度Indegree路径path邻接矩阵adjacencymatrix一、邻接矩阵存储(数组表示)借助矩阵(二维数组)表示元素(图的任意两个顶点)之间的关系用一维数组(顶点表)存
- 机器学习 - 学习线性模型的重要性
谦亨有终
跟着AI向前走机器学习学习人工智能
在接下来的博文中,我们将重点学习线性模型的回归模型和分类模型,在学习之前,让我们来了解一下学习线性模型的重要性,以及如何入门学习。一、作为初学者如何学习线性模型?作为初学者,要高效学习机器学习以及其中的线性模型,可以遵循以下几个步骤和建议:(一)、机器学习的整体学习策略打好数学基础线性代数:理解向量、矩阵、线性变换等,这些是理解模型表示(如y=w^Tx+b)和算法优化的基础。微积分:掌握导数、梯度
- 数据结构:利用邻接矩阵构造图及图的输出c++
Belieber53
c++数据结构算法
输入:请输入顶点数及弧数请按照(顶点,顶点,权值)格式输入各边依附的顶点及权值输出:图的结构如下,用邻接矩阵输出#include#include#include#defineINFINITYINT_MAX//最大值#defineMAX_VERTEX_NUM20//最大顶点个数#defineFALSE0#defineTRUE1#defineOK1#defineERROR-2#defineOVERFL
- 数据结构:图;邻接矩阵和邻接表
muxue178
数据结构算法
邻接矩阵:1.概念:邻接矩阵是图的存储结构之一,通过二维数组表示顶点间的连接关系。2.具体例子:一.无向图邻接矩阵示例:示例图(顶点:A、B、C,边:A-B、B-C):邻接矩阵:ABCA010B101C010特点:矩阵对称,主对角线为0(无自环边)。顶点B的度为2,对应第2行/列非零元素数量。非零元素总数=边数×2(无向图双向性)。二、有向图邻接矩阵示例示例图(顶点:V1→V2、V2→V3、V3→
- python画二维矩阵图_基于python 二维数组及画图的实例详解
weixin_39785400
python画二维矩阵图
1、二维数组取值注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型#二维数组importnumpyasnplist1=[[1.73,1.68,1.71,1.89,1.78],[54.4,59.2,63.6,88.4,68.7]]list3=[1.73,1.68,1.71,1.89,1.78]list4=[54.4,59.2,63.6,88.4,68.7]list
- 用esp32做一个门禁系统
m0_74183254
python
用esp32做一个门禁系统,显示时间,管理员密码,远程操控等硬件模块:ESP32开发板DS1302RTC模块(用于时间和日期)OLED显示屏(SSD1306)4x4矩阵键盘(用于密码输入)RFID读卡器(如RC522)蜂鸣器(用于报警)电磁锁或舵机控制的锁LED指示灯(绿色和红色)功能模块:RTC时间管理:通过DS1302模块获取时间和日期,并在OLED上显示。密码管理:支持10组用户密码,可修改
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- Python:第三方库
衍生星球
python第三方库
1.第三方Python库库名用途pip安装指令NumPy矩阵运算pipinstallnumpyMatplotlib产品级2D图形绘制pipinstallmatplotlibPIL图像处理pipinstallpillowsklearn机器学习和数据挖掘pipinstallsklearnRequestsHTTP协议访问pipinstallrequestsJieba中文分词pipinstalljieba
- 人工智能的本质解构:从二进制桎梏到造物主悖论
Somnolence.·.·.·.
人工智能人工智能ai
一、数学牢笼中的困兽:人工智能的0-1本质人工智能的底层逻辑是数学暴力的具象化演绎。晶体管开关的物理震荡被抽象为布尔代数的0-1序列,冯·诺依曼架构将思维简化为存储器与运算器的机械对话。即使深度神经网络看似模拟人脑突触,其本质仍是矩阵乘法的迭代游戏——波士顿动力机器人的空翻动作不过是微分方程求解的物理引擎呈现,AlphaGo的围棋神话只是蒙特卡洛树搜索的概率统计。这种基于有限离散数学的架构,注定人
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在