- Meta AI 最近推出了一款全新的机器学习框架ParetoQ,专门用于大型语言模型的4-bit 以下量化
新加坡内哥谈技术
人工智能语言模型自然语言处理
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/MetaAI最近推出了一款全新的机器学习框架——ParetoQ,专门用于大型语言模型的4
- AI Agent智能应用从0到1定制开发Langchain+LLM全流程解决方案与落地实战
AI知识分享官
人工智能langchain算法数据挖掘计算机视觉机器学习产品经理
大模型微调实战:精通、指令微调、开源大模型微调、对齐与垂直领域应用29套AI全栈大模型项目实战,人工智能视频课程-多模态大模型,微调技术训练营,大模型多场景实战,AI图像处理,AI量化投资,OPenCV视觉处理,机器学习,Pytorch深度学习,推荐系统,自动驾驶,训练私有大模型,LLM大语言模型,大模型多场景实战,Agent智能应用,AIGC实战落地,ChatGPT虚拟数字人,Djourney智
- 解码DeepSeek家族系列:大语言模型赛道上的黑马传奇
大F的智能小课
语言模型人工智能自然语言处理
1.DeepSeek公司概况1.1成立背景与发展历程DeepSeek,全称杭州深度求索人工智能基础技术研究有限公司,于2023年7月17日正式成立。公司由知名量化资管巨头幻方量化孕育而生,其创始人梁文峰是幻方量化的联合创始人之一。DeepSeek自成立之初,便专注于开发先进的大语言模型(LLM)及相关技术,致力于通过数据蒸馏技术提取更精炼、有用的数据,以提升模型性能。在发展历程中,DeepSeek
- 100.10 AI量化面试题:AI大模型中的MOE架构主要类型,和DeepSeek使用了哪一种类型?
AI量金术师
金融资产组合模型进化论人工智能架构金融lstmpython机器学习
目录0.承前1.解题思路1.1基础概念维度1.2架构对比维度1.3实践应用维度2.标准MOE架构2.1基本概念3.稀疏MOE架构3.1实现原理4.共享专家稀疏MOE架构4.1核心设计5.架构对比5.1主要特点对比5.2DeepSeek的选择6.回答话术0.承前本文通过通俗易懂的方式介绍MOE(混合专家系统)架构的几种变体,包括标准MOE、稀疏MOE和共享专家稀疏MOE,并分析它们的异同。如果想更加
- python同花顺交易接口_开启量化第一步!同花顺iFinD数据接口免费版简易操作教程...
weixin_39564527
python同花顺交易接口
金融市场波动频繁,投资往往会夹杂非理性的情绪。而量化交易,旨在以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,辅助投资者进行理性投资。不过计算机分析存在一定的技术门槛,有没有简单易学的量化交易方式,能够快速获取有价值的投资策略方案呢?同花顺iFinD数据接口免费版提供简易的操作与丰富的实操案例,将作为引路者,带你迈入量化世界!P
- 量化交易软件排名有哪些?如何评判其优劣?各软件有何独特之处?
财云量化
python炒股自动化量化交易程序化交易量化交易软件排名优劣评判独特之处股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- Python环境搭建与量化交易开发入门指南
量化投资技术
量化科普Python量化miniQMTQMT量化交易量化投资
Python环境搭建与量化交易开发入门指南在量化交易领域,Python因其强大的数据处理能力和丰富的库支持而成为首选编程语言。本文将指导您如何在本地搭建一个适合量化交易的Python环境,并介绍一些常用的代码编辑器和工具。《QMT开通规则分享》更多内容,知识星球搜索:数据与交易Python安装方式一:官网安装(推荐)首先,访问Python官网下载适合的版本。由于xtquant库目前最高支持到Pyt
- warm Agent框架入门指南:构建与编排多智能体系统的利器
aiweker
AI应用开发agent智能体openai人工智能
warmAgent框架入门指南:构建与编排多智能体系统的利器Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。Swarm专注于使代理的协调和执行轻量级、高度可控且易于测试。它通过两个原始抽象:Age
- 美国大学生数学建模竞赛COMAP2025-C题深度解读
@BreCaspian
数学建模数学建模
COMAP竞赛C题深度分析与创新解答一、问题重述与目标细化核心目标:预测2028年洛杉矶奥运会各国金牌及总奖牌数,并提供预测区间。识别可能首次获奖的国家,量化其概率。分析运动项目对奖牌的贡献度,提出国家优势项目优化策略。量化“教练效应”,推荐需引进教练的国家及项目组合。挑战:历史数据跨度长(1896–2024),需处理国家演变(如苏联解体)。教练数据稀疏,需设计间接指标衡量其影响。新兴项目(如滑板
- 100.13 AI量化面试题:支持向量机(SVM)如何处理高维和复杂数据集?
AI量金术师
金融资产组合模型进化论支持向量机人工智能算法金融python机器学习数学建模
目录0.承前1.解题思路1.1基础概念维度1.2技术实现维度1.3实践应用维度2.核函数实现2.1基础核函数2.2自定义核函数3.特征处理与优化3.1特征工程3.2参数优化4.实践应用策略4.1核函数选择指南4.2性能优化策略5.回答话术0.承前本文通过通俗易懂的方式介绍支持向量机(SVM)如何处理高维和复杂数据集,包括核函数技巧、特征工程和优化方法。如果想更加全面清晰地了解金融资产组合模型进化论
- 量化框架backtrader入门
诸葛说talk
python量化投资python金融
1.简介backtrader是一个用于回测和交易的python框架,它功能丰富,可以让你聚焦在设计可重用的交易策略、指标和分析上,而不用花大量时间在构建基础框架上面。优点:github开源,策略编写简单快速安装方便,除了matplotlib外,不依赖其他外部lib支持ib等券商实时交易数据来源支持csv文件,在线数据源或pandas格式,同时支持多数据来源、多策略支持TA-lib指标,方便支持自定
- 学习Backtrader的捷径:简易入门指南
TgpActionscript
学习python开发语言backtrader
Backtrader是一种功能强大的Python交易策略开发框架,它提供了灵活的工具和功能,方便开发者进行量化交易的回测和实盘操作。对于初学者而言,以下是一些简单的步骤和示例代码,帮助您快速入门Backtrader。步骤1:安装Backtrader首先,您需要安装Backtrader库。在命令行中运行以下命令来安装:pipinstallbacktrader步骤2:导入必要的库和模块在您的Pytho
- Backtrader 入门教程:Python 量化交易回测框架
临水逸
python开发语言
Backtrader入门教程:Python量化交易回测框架在量化交易的领域,Python是最受欢迎的编程语言之一,而Backtrader是其中最强大的回测框架之一。它为量化交易者提供了丰富的功能,帮助我们轻松实现交易策略的回测、优化、实盘交易等。本文将介绍如何使用Backtrader开始量化交易的入门教程。1.安装Backtrader首先,我们需要安装Backtrader库。打开命令行窗口,使用以
- 记一次简单的Oracle离线数据迁移至TiDB过程
qq_43479892
pythonoracle数据库database计算机
Python微信订餐小程序课程视频https://edu.csdn.net/course/detail/36074Python实战量化交易理财系统https://edu.csdn.net/course/detail/35475背景最近在支持一个从Oracle转TiDB的项目,为方便应用端兼容性测试需要把Oracle测试环境的库表结构和数据同步到TiDB中,由于数据量并不大,所以怎么方便怎么来,这里
- Python 量化
ONE_PUNCH_Ge
python开发语言
Python量化是指利用Python编程语言以及相关的库和工具来进行金融市场数据分析、策略开发和交易执行的过程。Python由于其简洁、易学、强大的生态系统和丰富的金融库而成为量化交易的首选编程语言之一。量化交易在金融领域得到广泛应用,它允许交易者通过系统性的方法来制定和执行交易策略,提高交易效率和决策的科学性。量化主要是通过数学和统计学的方法,利用计算机技术对金融市场进行量化分析,从而制定和执行
- 100.15 AI量化面试题:PPO与GPPO策略优化算法的异同点
AI量金术师
金融资产组合模型进化论人工智能算法金融python机器学习
目录0.承前1.基本概念解析1.1PPO算法1.2GPPO算法2.共同点分析2.1理论基础2.2实现特点3.差异点分析3.1算法设计差异3.2优化目标差异3.3应用场景差异4.选择建议4.1使用PPO的场景4.2使用GPPO的场景5.回答话术0.承前本文通过通俗易懂的方式介绍PPO(ProximalPolicyOptimization)和GPPO(GeneralizedProximalPolicy
- 100.16 AI量化面试题:监督学习技术在量化金融中的应用方案
AI量金术师
金融资产组合模型进化论人工智能学习金融python机器学习
目录0.承前1.解题思路1.1应用场景维度1.2技术实现维度1.3实践应用维度2.市场预测模型2.1趋势预测2.2模型训练与评估3.风险评估模型3.1信用风险评估4.投资组合优化4.1资产配置模型5.回答话术0.承前本文通过通俗易懂的方式介绍监督学习在量化金融中的应用,包括市场预测、风险评估、投资组合优化等方面。如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:0.金融资产组合模型
- 100.17 AI量化面试题:凯利准则的核心思想是什么?如何用它来确定最佳资本配置比例?
AI量金术师
金融资产组合模型进化论python人工智能机器学习金融数学建模
目录0.承前1.解题思路1.1理论基础维度1.2应用场景维度1.3实践实现维度2.基础实现2.1单资产凯利公式2.2多资产凯利优化3.风险管理扩展3.1分数凯利策略3.2动态调整机制4.实践应用4.1策略评估5.回答话术0.承前本文通过通俗易懂的方式介绍凯利准则(KellyCriterion)的核心思想及其在投资中的应用,包括理论基础、实现方法和实际案例。如果想更加全面清晰地了解金融资产组合模型进
- DeepSeek-V3:模型与权重全面解析
步子哥
AGI通用人工智能人工智能
DeepSeek-V3是一款开创性的混合专家(Mixture-of-Experts,MoE)语言模型,以其创新的架构设计、高效的训练方法和卓越的性能,成为开源大语言模型领域的标杆。本文将详细解析其模型架构、权重结构和量化技术,并结合其在实际应用中的表现,带您全面了解DeepSeek-V3的技术亮点。1.模型概述DeepSeek-V3是一款拥有6710亿总参数和每个令牌激活370亿参数的混合专家语言
- 从量化投资到AI大模型:DeepSeek创始人梁文锋的创新之路
何以问天涯
DeepSeek人工智能
一、学术的启蒙:学霸的崭露头角 梁文锋的成长故事始于1985年,他出生在广东省湛江市的一个普通家庭。从小,梁文锋就展现出对知识的强烈渴望和非凡的学习能力,尤其在数学领域,他总是能够轻松解决复杂的难题,成为学校里备受瞩目的“学霸”。 2002年,年仅17岁的梁文锋以吴川一中的优异成绩考入浙江大学,选择了电子信息工程专业。在浙江大学,梁文锋如鱼得水,不仅在学业上取得了优异的成绩,还积极参与各类学术
- ansible批量化脚本
miss大贝
linux运维服务器
之前写的shell脚本感觉比较麻烦代码如下#!/bin/bash#pass后面为目的ip地址的密码,此处密码为rootPASS=dfjaifda@!jf12343#PASS1=dfjaifda@!jf12343#那么后面为目的ip地址的用户名,此处用户名为rootUSER=rootIP=47.96.111.2#IP1=119.28.156.234#下面调用scp,-r表示递归传输address=/
- 程序化交易平台有哪些?各平台的优势和劣势在哪里?
股票程序化交易接口
量化交易股票API接口Python股票量化交易程序化交易平台优势劣势功能股票量化接口股票API接口
Python股票接口实现查询账户,提交订单,自动交易(1)Python股票程序交易接口查账,提交订单,自动交易(2)股票量化,Python炒股,CSDN交流社区>>>常见程序化交易平台分类国内有不少程序化交易平台。文华财经,它在国内期货市场中广泛应用。其优势在于界面友好,对于初学者来说很容易上手。它集成了大量的期货交易功能,方便用户进行技术分析和策略编写。它的劣势在于,与国际市场的连接相对有限,对
- 基于Jacoco的增量覆盖率实现与落地二
后端
前言测试团队在执行自动化或者黑盒测试时,希望同时获取代码的覆盖率,测研团队由此开发了第一代自动化覆盖率平台。随着业务迭代,存量代码越来越多,使用过程中遇到了很多新的问题,例如:无法统计增量代码覆盖率,以便量化测试完整度不支持合并覆盖率报告,多人多环境协作测试时无法获得完整统计数据报告手动生成,以及生成报告的必要信息也需要人肉收集,系统间自动化程度低,用户使用效率低针对上述的问题,测试研发团队开发了
- 模型轻量化
莱茶荼菜
人工智能学习
影响神经网络推理速度主要有4个因素:FLOPs、MAC、计算并行度、硬件平台架构与特性(算力、GPU内存带宽)模型压缩工业界主流的模型压缩方法有:知识蒸馏(KnowledgeDistillation,KD)轻量化模型架构(也叫紧凑的模型设计)、剪枝(Pruning)、量化(Quantization)。模型剪枝(ModelPruning):模型剪枝通过删除冗余的连接或参数来减小模型的大小。这可以通过
- 深度学习中模型轻量化及具体方案应用
码上就位
深度学习人工智能
模型轻量化介绍在深度学习中,模型轻量化是一项关键技术,用于在不显著损失模型精度的前提下减少模型的计算量和存储需求。轻量化技术尤其适用于资源受限的设备(如移动设备、嵌入式系统)上部署模型。模型轻量化的核心目标是提高推理速度、降低功耗、减少内存占用,以便在边缘设备上实现实时性或低延迟的响应。常用的模型轻量化方法包括以下几种:1.模型剪枝(Pruning)简介:通过减少模型中的冗余参数来降低计算量。具体
- 轻量化网络模型调研报告
云雨、
网络人工智能深度学习
一、轻量化网络的为何诞生 深度神经网络模型被广泛应用在图像分类、物体检测,目标跟踪等计算机视觉任务中,并取得了巨大成功。随着时代发展,人们更加关注深度神经网络的实际应用性能,人工智能技术的一个趋势是在边缘端平台上部署高性能的神经网络模型,并能在真实场景中实时(>30帧)运行,如移动端/嵌入式设备,这些平台的特点是内存资源少,处理器性能不高,功耗受限,这使得目前精度最高的模型根本无法在这些平台进行
- 如何对接券商api?需要满足哪些条件?对接过程中有哪些注意事项?
财云量化
python炒股自动化量化交易程序化交易券商api对接条件注意事项股票量化接口股票API接口
炒股自动化:申请官方API接口,散户也可以python炒股自动化(0),申请券商API接口python炒股自动化(1),量化交易接口区别Python炒股自动化(2):获取股票实时数据和历史数据Python炒股自动化(3):分析取回的实时数据和历史数据Python炒股自动化(4):通过接口向交易所发送订单Python炒股自动化(5):通过接口查询订单,查询账户资产股票量化,Python炒股,CSDN
- 基于Jacoco的增量覆盖率实现与落地三
后端
前言测试团队在执行自动化或者黑盒测试时,希望同时获取代码的覆盖率,测研团队由此开发了第一代自动化覆盖率平台。随着业务迭代,存量代码越来越多,使用过程中遇到了很多新的问题,例如:无法统计增量代码覆盖率,以便量化测试完整度不支持合并覆盖率报告,多人多环境协作测试时无法获得完整统计数据报告手动生成,以及生成报告的必要信息也需要人肉收集,系统间自动化程度低,用户使用效率低针对上述的问题,测试研发团队开发了
- 第二篇文章
后端
前言测试团队在执行自动化或者黑盒测试时,希望同时获取代码的覆盖率,测研团队由此开发了第一代自动化覆盖率平台。随着业务迭代,存量代码越来越多,使用过程中遇到了很多新的问题,例如:无法统计增量代码覆盖率,以便量化测试完整度不支持合并覆盖率报告,多人多环境协作测试时无法获得完整统计数据报告手动生成,以及生成报告的必要信息也需要人肉收集,系统间自动化程度低,用户使用效率低针对上述的问题,测试研发团队开发了
- SLDPRT格式文件用什么软件可以打开?
cad
sldprt文件是由SolidWorks软件创建的三维模型文件,它包含了物体的几何形状、尺寸和属性等信息。SolidWorks是一款功能强大的计算机辅助设计(CAD)软件,被广泛应用于工程设计和制造领域。因此,要打开sldprt文件,需要使用SolidWorks软件或与其兼容的软件。除了SolidWorks软件,还有一些其他软件也可以打开sldprt文件,比如CAD看图王等专业轻量化的CAD看图软
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc