301. 任务安排2,斜率优化dp

301. 任务安排2 - AcWing题库

有 N 个任务排成一个序列在一台机器上等待执行,它们的顺序不得改变。

机器会把这 N 个任务分成若干批,每一批包含连续的若干个任务。

从时刻 0 开始,任务被分批加工,执行第 i 个任务所需的时间是 Ti。

另外,在每批任务开始前,机器需要 S 的启动时间,故执行一批任务所需的时间是启动时间 S 加上每个任务所需时间之和。

一个任务执行后,将在机器中稍作等待,直至该批任务全部执行完毕。

也就是说,同一批任务将在同一时刻完成。

每个任务的费用是它的完成时刻乘以一个费用系数 Ci。

请为机器规划一个分组方案,使得总费用最小。

输入格式

第一行包含整数 N。

第二行包含整数 S。

接下来 N 行每行有一对整数,分别为 Ti 和 Ci,表示第 i 个任务单独完成所需的时间 Ti 及其费用系数 Ci。

输出格式

输出一个整数,表示最小总费用。

数据范围

1≤N≤3×105
1≤Ti,Ci≤512
0≤S≤512

输入样例:
5
1
1 3
3 2
4 3
2 3
1 4
输出样例:
153

解析 :斜率优化dp

AcWing 301. 任务安排2(算法提高课) - AcWing

 

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

using namespace std;
typedef long long LL;
const int N = 3e5 + 5;
int n, s;
LL c[N], t[N];
LL f[N];
int q[N];

int main() {
	scanf("%d%d", &n, &s);
	for (int i = 1; i <= n; i++) {
		scanf("%lld%lld", &t[i], &c[i]);
		t[i] += t[i - 1];
		c[i] += c[i - 1];
	}
	int hh = 0, tt = 0;
	q[0] = 0;
	for (int i = 1; i <= n; i++) {
		while (hh < tt && (f[q[hh + 1]] - f[q[hh]]) <= (t[i] + s) * (c[q[hh + 1]] - c[q[hh]]))hh++;
		int j = q[hh];
		f[i] = f[j] - (t[i] + s) * c[j] + t[i] * c[i] + s * c[n];
		while (hh < tt && (f[q[tt]] - f[q[tt - 1]]) * (c[i] - c[q[tt]]) >= (f[i] - f[q[tt]]) * (c[q[tt]] - c[q[tt - 1]]))tt--;
		q[++tt] = i;
	}
	printf("%lld\n", f[n]);
	return 0;
}

你可能感兴趣的:(#,斜率优化dp,算法,动态规划)