目录
一、(leetcode 738)单调递增的数字
1.暴力解法
2.贪心解法
二、(leetcode 968)监控二叉树
1.二叉树遍历
2.如何隔两个节点放一个摄像头
情况1:左右节点都有覆盖
情况2:左右节点至少有一个无覆盖的情况
情况3:左右节点至少有一个有摄像头
情况4:头结点没有覆盖
三、贪心算法总结
力扣题目链接
class Solution {
private:
// 判断一个数字的各位上是否是递增
bool checkNum(int num) {
int max = 10;
while (num) {
int t = num % 10;
if (max >= t) max = t;
else return false;
num = num / 10;
}
return true;
}
public:
int monotoneIncreasingDigits(int N) {
for (int i = N; i > 0; i--) { // 从大到小遍历
if (checkNum(i)) return i;
}
return 0;
}
};
思考:
出现strNum[i - 1] > strNum[i]情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9
考虑多位情况,应该从后往前遍历(原因:从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。)
从后向前遍历332的数值变化为:332 -> 329 -> 299
class Solution {
public:
int monotoneIncreasingDigits(int N) {
string strNum = to_string(N);
// flag用来标记赋值9从哪里开始
// 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
int flag = strNum.size();
for (int i = strNum.size() - 1; i > 0; i--) {
if (strNum[i - 1] > strNum[i] ) {
flag = i;
strNum[i - 1]--;
}
}
for (int i = flag; i < strNum.size(); i++) {
strNum[i] = '9';
}
return stoi(strNum);
}
};
力扣题目链接
把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积
从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!
大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。
此时这道题目还有两个难点:
可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。
后序遍历代码如下:
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (终止条件) return ;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
逻辑处理 // 中
return ;
}
注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以推导中间节点的状态
每个节点可能有几种状态:
我们分别有三个数字来表示:
因为在遍历树的过程中,就会遇到空节点,那么空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?
回归本质,为了让摄像头数量最少,要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。
那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。
所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了
接下来就是递推关系。
那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖)
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。
主要有如下四类情况:
左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。
代码如下:
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
如果是以下情况,则中间节点(父节点)应该放摄像头:
这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。
此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。
代码如下:
if (left == 0 || right == 0) {
result++;
return 1;
}
如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)
if (left == 1 || right == 1) return 2;
从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:
以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:
所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
C++代码如下:
// 版本一
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
// 空节点,该节点有覆盖
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
// 情况1
// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;
// 情况2
// left == 0 && right == 0 左右节点无覆盖
// left == 1 && right == 0 左节点有摄像头,右节点无覆盖
// left == 0 && right == 1 左节点有无覆盖,右节点摄像头
// left == 0 && right == 2 左节点无覆盖,右节点覆盖
// left == 2 && right == 0 左节点覆盖,右节点无覆盖
if (left == 0 || right == 0) {
result++;
return 1;
}
// 情况3
// left == 1 && right == 2 左节点有摄像头,右节点有覆盖
// left == 2 && right == 1 左节点有覆盖,右节点有摄像头
// left == 1 && right == 1 左右节点都有摄像头
// 其他情况前段代码均已覆盖
if (left == 1 || right == 1) return 2;
// 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
// 这个 return -1 逻辑不会走到这里。
return -1;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
// 情况4
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};
在以上代码的基础上,再进行精简,代码如下:
// 版本二
class Solution {
private:
int result;
int traversal(TreeNode* cur) {
if (cur == NULL) return 2;
int left = traversal(cur->left); // 左
int right = traversal(cur->right); // 右
if (left == 2 && right == 2) return 0;
else if (left == 0 || right == 0) {
result++;
return 1;
} else return 2;
}
public:
int minCameraCover(TreeNode* root) {
result = 0;
if (traversal(root) == 0) { // root 无覆盖
result++;
}
return result;
}
};