代码随想录算法训练营 day37 |738.单调递增的数字、968.监控二叉树、贪心算法总结

目录

一、(leetcode 738)单调递增的数字

1.暴力解法

2.贪心解法

二、(leetcode 968)监控二叉树

1.二叉树遍历

2.如何隔两个节点放一个摄像头

情况1:左右节点都有覆盖

情况2:左右节点至少有一个无覆盖的情况

情况3:左右节点至少有一个有摄像头

情况4:头结点没有覆盖

三、贪心算法总结


一、(leetcode 738)单调递增的数字

力扣题目链接

1.暴力解法

class Solution {
private:
    // 判断一个数字的各位上是否是递增
    bool checkNum(int num) {
        int max = 10;
        while (num) {
            int t = num % 10;
            if (max >= t) max = t;
            else return false;
            num = num / 10;
        }
        return true;
    }
public:
    int monotoneIncreasingDigits(int N) {
        for (int i = N; i > 0; i--) { // 从大到小遍历
            if (checkNum(i)) return i;
        }
        return 0;
    }
};
  • 时间复杂度:O(n × m) m为n的数字长度
  • 空间复杂度:O(1)

2.贪心解法

思考:

出现strNum[i - 1] > strNum[i]情况(非单调递增),首先想让strNum[i - 1]--,然后strNum[i]给为9

考虑多位情况,应该从后往前遍历(原因:从前向后遍历的话,遇到strNum[i - 1] > strNum[i]的情况,让strNum[i - 1]减一,但此时如果strNum[i - 1]减一了,可能又小于strNum[i - 2]。)

从后向前遍历332的数值变化为:332 -> 329 -> 299

class Solution {
public:
    int monotoneIncreasingDigits(int N) {
        string strNum = to_string(N);
        // flag用来标记赋值9从哪里开始
        // 设置为这个默认值,为了防止第二个for循环在flag没有被赋值的情况下执行
        int flag = strNum.size();
        for (int i = strNum.size() - 1; i > 0; i--) {
            if (strNum[i - 1] > strNum[i] ) {
                flag = i;
                strNum[i - 1]--;
            }
        }
        for (int i = flag; i < strNum.size(); i++) {
            strNum[i] = '9';
        }
        return stoi(strNum);
    }
};
  • 时间复杂度:O(n),n 为数字长度
  • 空间复杂度:O(n),需要一个字符串,转化为字符串操作更方便

二、(leetcode 968)监控二叉树

力扣题目链接

把摄像头放在叶子节点的父节点位置,才能充分利用摄像头的覆盖面积

从下往上看,局部最优:让叶子节点的父节点安摄像头,所用摄像头最少,整体最优:全部摄像头数量所用最少!

大体思路就是从低到上,先给叶子节点父节点放个摄像头,然后隔两个节点放一个摄像头,直至到二叉树头结点。

此时这道题目还有两个难点:

  1. 二叉树的遍历
  2. 如何隔两个节点放一个摄像头

1.二叉树遍历

可以使用后序遍历也就是左右中的顺序,这样就可以在回溯的过程中从下到上进行推导了。

后序遍历代码如下:

int traversal(TreeNode* cur) {

    // 空节点,该节点有覆盖
    if (终止条件) return ;

    int left = traversal(cur->left);    // 左
    int right = traversal(cur->right);  // 右

    逻辑处理                            // 中
    return ;
}

注意在以上代码中我们取了左孩子的返回值,右孩子的返回值,即left 和 right, 以推导中间节点的状态

2.如何隔两个节点放一个摄像头

每个节点可能有几种状态:

  • 该节点无覆盖
  • 本节点有摄像头
  • 本节点有覆盖

我们分别有三个数字来表示:

  • 0:该节点无覆盖
  • 1:本节点有摄像头
  • 2:本节点有覆盖

因为在遍历树的过程中,就会遇到空节点,那么空节点究竟是哪一种状态呢? 空节点表示无覆盖? 表示有摄像头?还是有覆盖呢?

回归本质,为了让摄像头数量最少,要尽量让叶子节点的父节点安装摄像头,这样才能摄像头的数量最少。

那么空节点不能是无覆盖的状态,这样叶子节点就要放摄像头了,空节点也不能是有摄像头的状态,这样叶子节点的父节点就没有必要放摄像头了,而是可以把摄像头放在叶子节点的爷爷节点上。

所以空节点的状态只能是有覆盖,这样就可以在叶子节点的父节点放摄像头了

接下来就是递推关系。

那么递归的终止条件应该是遇到了空节点,此时应该返回2(有覆盖)

// 空节点,该节点有覆盖
if (cur == NULL) return 2;

递归的函数,以及终止条件已经确定了,再来看单层逻辑处理。

主要有如下四类情况:

情况1:左右节点都有覆盖

左孩子有覆盖,右孩子有覆盖,那么此时中间节点应该就是无覆盖的状态了。

代码随想录算法训练营 day37 |738.单调递增的数字、968.监控二叉树、贪心算法总结_第1张图片

代码如下:

// 左右节点都有覆盖
if (left == 2 && right == 2) return 0;

情况2:左右节点至少有一个无覆盖的情况

如果是以下情况,则中间节点(父节点)应该放摄像头:

  • left == 0 && right == 0 左右节点无覆盖
  • left == 1 && right == 0 左节点有摄像头,右节点无覆盖
  • left == 0 && right == 1 左节点有无覆盖,右节点摄像头
  • left == 0 && right == 2 左节点无覆盖,右节点覆盖
  • left == 2 && right == 0 左节点覆盖,右节点无覆盖

这个不难理解,毕竟有一个孩子没有覆盖,父节点就应该放摄像头。

此时摄像头的数量要加一,并且return 1,代表中间节点放摄像头。

代码如下:

if (left == 0 || right == 0) {
    result++;
    return 1;
}

情况3:左右节点至少有一个有摄像头

如果是以下情况,其实就是 左右孩子节点有一个有摄像头了,那么其父节点就应该是2(覆盖的状态)

  • left == 1 && right == 2 左节点有摄像头,右节点有覆盖
  • left == 2 && right == 1 左节点有覆盖,右节点有摄像头
  • left == 1 && right == 1 左右节点都有摄像头
if (left == 1 || right == 1) return 2;

从这个代码中,可以看出,如果left == 1, right == 0 怎么办?其实这种条件在情况2中已经判断过了,如图:

代码随想录算法训练营 day37 |738.单调递增的数字、968.监控二叉树、贪心算法总结_第2张图片

情况4:头结点没有覆盖

以上都处理完了,递归结束之后,可能头结点 还有一个无覆盖的情况,如图:

代码随想录算法训练营 day37 |738.单调递增的数字、968.监控二叉树、贪心算法总结_第3张图片

所以递归结束之后,还要判断根节点,如果没有覆盖,result++,代码如下:

int minCameraCover(TreeNode* root) {
    result = 0;
    if (traversal(root) == 0) { // root 无覆盖
        result++;
    }
    return result;
}

C++代码如下:

// 版本一
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {

        // 空节点,该节点有覆盖
        if (cur == NULL) return 2;

        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右

        // 情况1
        // 左右节点都有覆盖
        if (left == 2 && right == 2) return 0;

        // 情况2
        // left == 0 && right == 0 左右节点无覆盖
        // left == 1 && right == 0 左节点有摄像头,右节点无覆盖
        // left == 0 && right == 1 左节点有无覆盖,右节点摄像头
        // left == 0 && right == 2 左节点无覆盖,右节点覆盖
        // left == 2 && right == 0 左节点覆盖,右节点无覆盖
        if (left == 0 || right == 0) {
            result++;
            return 1;
        }

        // 情况3
        // left == 1 && right == 2 左节点有摄像头,右节点有覆盖
        // left == 2 && right == 1 左节点有覆盖,右节点有摄像头
        // left == 1 && right == 1 左右节点都有摄像头
        // 其他情况前段代码均已覆盖
        if (left == 1 || right == 1) return 2;

        // 以上代码我没有使用else,主要是为了把各个分支条件展现出来,这样代码有助于读者理解
        // 这个 return -1 逻辑不会走到这里。
        return -1;
    }

public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        // 情况4
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};

在以上代码的基础上,再进行精简,代码如下:

// 版本二
class Solution {
private:
    int result;
    int traversal(TreeNode* cur) {
        if (cur == NULL) return 2;
        int left = traversal(cur->left);    // 左
        int right = traversal(cur->right);  // 右
        if (left == 2 && right == 2) return 0;
        else if (left == 0 || right == 0) {
            result++;
            return 1;
        } else return 2;
    }
public:
    int minCameraCover(TreeNode* root) {
        result = 0;
        if (traversal(root) == 0) { // root 无覆盖
            result++;
        }
        return result;
    }
};

  • 时间复杂度: O(n),需要遍历二叉树上的每个节点
  • 空间复杂度: O(n)

三、贪心算法总结

 

 

你可能感兴趣的:(c++代码随想录,leetcode,算法)