学习小组Day6R包学习-Ywen

安装和加载R包

1.镜像设置

你还在每次配置Rstudio的下载镜像吗?
自定义CRAN和bioconductor的镜像,可以运行下面两行代码

# options函数就是设置R运行过程中的一些选项设置
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源
# 当然可以换成其他地区的镜像

可能下次打开会有问题,可以运行options()$BioC_mirror 看一下是否为国内如果不是,可以使用终极方法。
首先用file.edit()来编辑文件:
file.edit('~/.Rprofile')
然后在其中输入下面两行代码,保存重启Rstudio

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) #对应清华源
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") #对应中科大源

2.安装

R包安装命令是install.packages(“包”)或者BiocManager::install(“包”)。取决于你要安装的包存在于CRAN网站还是Biocductor,存在哪里可以搜到。

3.加载

下面两个命令均可。
library(包)
require(包)

安装步骤(以dplyr为例)

options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
library(dplyr)

dplyr五个基础函数

井号开头的是代码运行记录。可以和自己的运行结果做对比

1.mutate(),新增列

mutate(test, new = Sepal.Length * Sepal.Width)
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species   new
## 1          5.1         3.5          1.4         0.2     setosa 17.85
## 2          4.9         3.0          1.4         0.2     setosa 14.70
## 3          7.0         3.2          4.7         1.4 versicolor 22.40
## 4          6.4         3.2          4.5         1.5 versicolor 20.48
## 5          6.3         3.3          6.0         2.5  virginica 20.79
## 6          5.8         2.7          5.1         1.9  virginica 15.66
mutate(),新增列

2.select(),按列筛选

(1)按列号筛选

select(test,1)
##     Sepal.Length
## 1            5.1
## 2            4.9
## 51           7.0
## 52           6.4
## 101          6.3
## 102          5.8
select(test,c(1,5))
##     Sepal.Length    Species
## 1            5.1     setosa
## 2            4.9     setosa
## 51           7.0 versicolor
## 52           6.4 versicolor
## 101          6.3  virginica
## 102          5.8  virginica

按列号筛选

(2)按列名筛选

select(test, Petal.Length, Petal.Width)
##     Petal.Length Petal.Width
## 1            1.4         0.2
## 2            1.4         0.2
## 51           4.7         1.4
## 52           4.5         1.5
## 101          6.0         2.5
## 102          5.1         1.9
vars <- c("Petal.Length", "Petal.Width")
select(test, one_of(vars))
##     Petal.Length Petal.Width
## 1            1.4         0.2
## 2            1.4         0.2
## 51           4.7         1.4
## 52           4.5         1.5
## 101          6.0         2.5
## 102          5.1         1.9
按列名筛选

3.filter()筛选行

filter(test, Species == "setosa")
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
## 2          4.9         3.0          1.4         0.2  setosa
filter(test, Species == "setosa"&Sepal.Length > 5 )
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 1          5.1         3.5          1.4         0.2  setosa
filter(test, Species %in% c("setosa","versicolor"))
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          5.1         3.5          1.4         0.2     setosa
## 2          4.9         3.0          1.4         0.2     setosa
## 3          7.0         3.2          4.7         1.4 versicolor
## 4          6.4         3.2          4.5         1.5 versicolor

%in% 判断 前面的对象是否在后面的容器中


筛选行

4.arrange(),按某1列或某几列对整个表格进行排序

arrange(test, Sepal.Length)#默认从小到大排序
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          4.9         3.0          1.4         0.2     setosa
## 2          5.1         3.5          1.4         0.2     setosa
## 3          5.8         2.7          5.1         1.9  virginica
## 4          6.3         3.3          6.0         2.5  virginica
## 5          6.4         3.2          4.5         1.5 versicolor
## 6          7.0         3.2          4.7         1.4 versicolor
arrange(test, desc(Sepal.Length))#用desc从大到小
##   Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
## 1          7.0         3.2          4.7         1.4 versicolor
## 2          6.4         3.2          4.5         1.5 versicolor
## 3          6.3         3.3          6.0         2.5  virginica
## 4          5.8         2.7          5.1         1.9  virginica
## 5          5.1         3.5          1.4         0.2     setosa
## 6          4.9         3.0          1.4         0.2     setosa
排序

5.summarise():汇总

summarise(test, mean(Sepal.Length), sd(Sepal.Length))# 计算Sepal.Length的平均值和标准差
##   mean(Sepal.Length) sd(Sepal.Length)
## 1           5.916667        0.8084965
# 先按照Species分组,计算每组Sepal.Length的平均值和标准差
group_by(test, Species)
## # A tibble: 6 x 5
## # Groups:   Species [3]
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
## *                                    
## 1          5.1         3.5          1.4         0.2 setosa    
## 2          4.9         3            1.4         0.2 setosa    
## 3          7           3.2          4.7         1.4 versicolor
## 4          6.4         3.2          4.5         1.5 versicolor
## 5          6.3         3.3          6           2.5 virginica 
## 6          5.8         2.7          5.1         1.9 virginica
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
##   Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
##   
## 1 setosa                     5                 0.141
## 2 versicolor                 6.7               0.424
## 3 virginica                  6.05              0.354
计算平均值和标准差

dplyr两个实用技能

1:管道操作 %>% (cmd/ctr + shift + M)

(加载任意一个tidyverse包即可用管道符号)

test %>% 
  group_by(Species) %>% 
  summarise(mean(Sepal.Length), sd(Sepal.Length))
## # A tibble: 3 x 3
##   Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
##   
## 1 setosa                     5                 0.141
## 2 versicolor                 6.7               0.424
## 3 virginica                  6.05              0.354
管道操作

2:count统计某列的unique值

count(test,Species)
## # A tibble: 3 x 2
##   Species        n
##   
## 1 setosa         2
## 2 versicolor     2
## 3 virginica      2
统计某列的unique值

dplyr处理关系数据

即将2个表进行连接,注意:不要引入factor

options(stringsAsFactors = F)

test1 <- data.frame(x = c('b','e','f','x'), 
                    z = c("A","B","C",'D'),
                    stringsAsFactors = F)
test1
##   x z
## 1 b A
## 2 e B
## 3 f C
## 4 x D
test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                    y = c(1,2,3,4,5,6),
                    stringsAsFactors = F)
test2 
##   x y
## 1 a 1
## 2 b 2
## 3 c 3
## 4 d 4
## 5 e 5
## 6 f 6

1.內连inner_join,取交集

inner_join(test1, test2, by = "x")
##   x z y
## 1 b A 2
## 2 e B 5
## 3 f C 6
以x列取交集

2.左连left_join

left_join(test1, test2, by = 'x')
##   x z  y
## 1 b A  2
## 2 e B  5
## 3 f C  6
## 4 x D NA
left_join(test2, test1, by = 'x')
##   x y    z
## 1 a 1 
## 2 b 2    A
## 3 c 3 
## 4 d 4 
## 5 e 5    B
## 6 f 6    C
左连

3.全连full_join

full_join( test1, test2, by = 'x')
##   x    z  y
## 1 b    A  2
## 2 e    B  5
## 3 f    C  6
## 4 x    D NA
## 5 a 
## 6 c 
## 7 d 
全连

4.半连接:返回能够与y表匹配的x表所有记录semi_join

semi_join(x = test1, y = test2, by = 'x')
##   x z
## 1 b A
## 2 e B
## 3 f C
返回能够与y表匹配的x表所有记录

5.反连接:返回无法与y表匹配的x表的所有记录anti_join

anti_join(x = test2, y = test1, by = 'x')
##   x y
## 1 a 1
## 2 c 3
## 3 d 4
返回无法与y表匹配的x表的所有记录

6.简单合并

相当于base包里的cbind()函数和rbind()函数;注意,bind_rows()函数需要两个表格列数相同,而bind_cols()函数则需要两个数据框有相同的行数

test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
test1
##   x  y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
test2 <- data.frame(x = c(5,6), y = c(50,60))
test2
##   x  y
## 1 5 50
## 2 6 60
test3 <- data.frame(z = c(100,200,300,400))
test3
##     z
## 1 100
## 2 200
## 3 300
## 4 400
bind_rows(test1, test2)
##   x  y
## 1 1 10
## 2 2 20
## 3 3 30
## 4 4 40
## 5 5 50
## 6 6 60
bind_cols(test1, test3)
##   x  y   z
## 1 1 10 100
## 2 2 20 200
## 3 3 30 300
## 4 4 40 400
合并

思维导图

dplyr

文中部分文字和图片来自生信星球公众号

你可能感兴趣的:(学习小组Day6R包学习-Ywen)