pytorch 模型量化处理及导出onnx格式模型

量化处理可以加快推理速度,减少模型占用空间 ,提高推理性能的必要选择。

量化时需要对算子进行量化处理,对输入数据fp32格式进行量化处理到int8, 再输入模型中。

最后测试了两种模型相对于torch原始模型的误差均值。

import torch
import torch.quantization


class M(torch.nn.Module):
    def __init__(self):
        super(M, self).__init__()
        self.quant = torch.quantization.QuantStub()  # 静态量化时量化桩用于量化数据
        self.conv = torch.nn.Conv2d(1, 1, 1)
        self.relu = torch.nn.ReLU()
        self.dequant = torch.quantization.DeQuantStub() #取消量化桩

    def forward(self, x):
        x = self.quant(x) #量化数据,从fp32->uint8
        x = self.conv(x)  #量化后conv
        x = self.relu(x)    #量化后relu
        x = self.dequant(x) #恢复量化变量为fp32
        return x

# create a model instance
model_fp32 = M()  #创建模型
model_fp32.eval() #推理模式
model_fp32.qconfig = torch.quantization.get_default_qconfig('fbgemm') #设置量化配置
model_fp32_fused = torch.quantization.fuse_modules(model_fp32, [['conv', 'relu']]) #量化算子并融合
model_fp32_prepared = torch.quantization.prepare(model_fp32_fused) #准备
input_fp32 = torch.randn(4, 1, 4, 4) #产生伪数据用于测试模型
model_fp32_prepared(input_fp32) #数据量化操作,准备范围,刻度等
model_int8 = torch.quantization.convert(model_fp32_prepared) #量化数据


output_x = model_int8(input_fp32) #量化后推理
traced = torch.jit.trace(model_int8, (input_fp32,))  #用于演示trace方法
traced_script = torch.jit.script(model_int8, (input_fp32,)) #用于验证script方法

torch.onnx.export(model_int8,             # model being run
                    input_fp32,                         # model input (or a tuple for multiple inputs)
                    './model_int8.onnx',   # where to save the model (can be a file or file-like object)
                    export_params=True,        # store the trained parameter weights inside the model file
                    opset_version=13,          # the ONNX version to export the model to
                    #do_constant_folding=True,  # whether to execute constant folding for optimization
                    input_names = ['input'],   # the model's input names
                    #output_names = ['output'], # the model's output names
                    #example_outputs=traced(input_fp32)
                    )

torch.onnx.export(traced,             # model being run
                    input_fp32,                         # model input (or a tuple for multiple inputs)
                    './model_int8_trace.onnx',   # where to save the model (can be a file or file-like object)
                    export_params=True,        # store the trained parameter weights inside the model file
                    opset_version=13,          # the ONNX version to export the model to
                    do_constant_folding=True,  # whether to execute constant folding for optimization
                    input_names = ['input'],   # the model's input names
                    output_names = ['output'], # the model's output names
                  #  example_outputs=traced(input_fp32)
                    )

onnx_pth= './model_int8.onnx'

oxx_m = ort.InferenceSession(onnx_pth)
onnx_blob = input_fp32.data.numpy()
onnx_out = oxx_m.run(None, {'input':onnx_blob})[0]

print('mean diff of int8 onnx= ', np.mean(onnx_out - torch_out.data.numpy()))

onnx_pth='./model_int8_trace.onnx'
oxx_m = ort.InferenceSession(onnx_pth)
onnx_out2 = oxx_m.run(None, {'input':onnx_blob})[0]

print('mean diff of traced int8 onnx= ', np.mean(onnx_out2 - torch_out.data.numpy()))


# for traced

traced_out=traced(input_fp32)

print('mean diff of traced torch= ', np.mean(traced_out.data.numpy() - torch_out.data.numpy()))
# for script
script_out=traced_script(input_fp32)

print('mean diff of script torch= ', np.mean(script_out.data.numpy() - torch_out.data.numpy()))
#保存模型,可以用于pnnx转换ncnn
torch.jit.save(traced,"./jit_trace.pth")
torch.jit.save(traced_script,"jit_script.pth")

你可能感兴趣的:(pytorch,深度学习,神经网络)