【OpenCV】72 二值图像分析—缺陷检测一

72 二值图像分析—缺陷检测一

代码

import cv2 as cv
import numpy as np

src = cv.imread("../images/ce_02.jpg")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)

# 图像二值化
gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)

# 开操作。扩大图像缺口
se = cv.getStructuringElement(cv.MORPH_RECT, (3, 3), (-1, -1))
binary = cv.morphologyEx(binary, cv.MORPH_OPEN, se)
cv.imshow("binary", binary)

# 轮廓提取
contours, hierarchy = cv.findContours(binary, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE)
height, width = src.shape[:2]
for c in range(len(contours)):
    x, y, w, h = cv.boundingRect(contours[c])
    area = cv.contourArea(contours[c])
    if h > (height//2): # 图像过大直接略过
        continue
    if area < 150: # 面积过小的图像直接略过
        continue
    cv.rectangle(src, (x, y), (x+w, y+h), (0, 0, 255), 1, 8, 0)
    cv.drawContours(src, contours, c, (0, 255, 0), 2, 8)

cv.imshow("result", src)
cv.waitKey(0)
cv.destroyAllWindows()

实验结果

【OpenCV】72 二值图像分析—缺陷检测一_第1张图片

解释

这是一个二值图像分析的案例,通过这些案例知识把前面所学的知识点串联起来使用,实现有一定工业实用价值的代码。分为两个部分,一个部分是提取指定的轮廓,第二个部分通过对比实现划痕检测与缺角检测。本次主要搞定第一部分,学会观察图像与提取图像ROI对象轮廓外接矩形与轮廓。具体实现见代码备注。


所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

你可能感兴趣的:(OpenCV)