在很多软件系统功能中都会出现定时任务的业务场景,比如提前点单,比如定时发布动态,文章等而出现这样的的定时的任务为延迟队任务
任务的持久化一般都需要建立一个任务表和任务日志表,避免宕机导致任务失效,先新建立一个数据库,创建基本的任务表和任务日志表,其中的parameter设置为longbite,是防止消息使用json传递消耗较大,节省资源
参数是在任务中存储操作任务需要的关键信息,设置为比特位是更节省资源
模拟业务文章定时发布,前端传递了一个文章对象,其中包含了预期发布的时间
传递的文章dto中包含了对应的文章信息,我们需要做的就是根据审核内容进行保存在文章表,设置是否上架到用户端,如果携带的发布时间比现在要大,说明是延迟任务,那么此时就涉及到延迟任务的实现
主要是接收应用的http请求
@RestController
@RequestMapping("/api/v1/news")
public class NewsController {
@Autowired
NewsService wmNewsService;
@PostMapping("/list")
public ResponseResult findAll(@RequestBody WmNewsPageReqDto dto){
return wmNewsService.findAll(dto);
}
/**
* 文章的提交
*/
@PostMapping("/submit")
public ResponseResult submit(@RequestBody WmNewsDto dto){
return wmNewsService.submitNews(dto);
}
}
用于处理文章提交的逻辑
@Service
@Slf4j
@Transactional
public class WmNewsServiceImpl extends ServiceImpl<WmNewsMapper, WmNews> implements WmNewsService {
/**
* 自动扫描审核文章业务 这里不是重点不用关注
/
@Autowired
WmTaskService taskService;//
/**
* 发布修改文章或保存为草稿
* @param dto
* @return
*/
@Override
public ResponseResult submitNews(WmNewsDto dto) {
//0.条件判断
if(dto == null || dto.getContent() == null){
return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
}
//1.保存或修改文章
WmNews wmNews = new WmNews();
//属性拷贝 属性名词和类型相同才能拷贝
BeanUtils.copyProperties(dto,wmNews);
//封面图片 list---> string
if(dto.getImages() != null && dto.getImages().size() > 0){
//[1dddfsd.jpg,sdlfjldk.jpg]--> 1dddfsd.jpg,sdlfjldk.jpg
String imageStr = StringUtils.join(dto.getImages(), ",");
wmNews.setImages(imageStr);
}
//如果当前封面类型为自动 -1
if(dto.getType().equals(WemediaConstants.WM_NEWS_TYPE_AUTO)){
wmNews.setType(null);
}
saveOrUpdateWmNews(wmNews);
//2.判断是否为草稿 如果为草稿结束当前方法
if(dto.getStatus().equals(WmNews.Status.NORMAL.getCode())){
return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
}
//3.不是草稿,保存文章内容图片与素材的关系
//获取到文章内容中的图片信息
List<String> materials = ectractUrlInfo(dto.getContent());
saveRelativeInfoForContent(materials,wmNews.getId());
//4.不是草稿,保存文章封面图片与素材的关系,如果当前布局是自动,需要匹配封面图片
saveRelativeInfoForCover(dto,wmNews,materials);
/*
*
*上面都不用看,是对文章的处理逻辑,
*当对文章完成处理后
*/
//上面的一大堆都是对文章的处理逻辑
if (wmNews.getId()!=null){
taskService.addNewsToTask(wmNews.getId(),wmNews.getPublishTime());
}
return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
}
}
}
文章处理的逻辑并不重要,重要的是完成对延迟任务的实现
所以重点关注定时任务,原本的模块是管理端完成文章的处理–>客户端的文章上架(保存到数据库还是修改库不需要关注),现在变成了:管理端完成了–>定时任务的处理–>时间到了–>客户端文章的处理,所以我们需要关注的就是任务处理的部分,因为这里假设的场景是微服务的场景下,所以就需要新建一个定时任务模块,并且将上述的taskService改为feign模块的远程调用接口
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-data-redisartifactId>
dependency>
<dependency>
<groupId>org.apache.commonsgroupId>
<artifactId>commons-pool2artifactId>
dependency>
<dependency>
<groupId>org.springframework.bootgroupId>
<artifactId>spring-boot-starter-cacheartifactId>
dependency>
2.实现思路
添加一个任务对象到数据库,然后进行判断,如果执行时间<=当前的时间说明需要放入list队列,等待被消费者消费,如果大于当前时间,但是小于设置预设时间(如果大于预设时间,说明任务举例处理还很遥远, 不对其进行处理避免多余的io操作),说明是将要消费任务,使用set数据类型进行存储,并且使用时间错作为score,这样做到排序的效果
@Component
public class CacheService extends CachingConfigurerSupport {
@Autowired
private StringRedisTemplate stringRedisTemplate;
public StringRedisTemplate getstringRedisTemplate() {
return this.stringRedisTemplate;
}
/** -------------------key相关操作--------------------- */
/**
* 删除key
*
* @param key
*/
public void delete(String key) {
stringRedisTemplate.delete(key);
}
/**
* 批量删除key
*
* @param keys
*/
public void delete(Collection<String> keys) {
stringRedisTemplate.delete(keys);
}
/**
* 序列化key
*
* @param key
* @return
*/
public byte[] dump(String key) {
return stringRedisTemplate.dump(key);
}
/**
* 是否存在key
*
* @param key
* @return
*/
public Boolean exists(String key) {
return stringRedisTemplate.hasKey(key);
}
/**
* 设置过期时间
*
* @param key
* @param timeout
* @param unit
* @return
*/
public Boolean expire(String key, long timeout, TimeUnit unit) {
return stringRedisTemplate.expire(key, timeout, unit);
}
/**
* 设置过期时间
*
* @param key
* @param date
* @return
*/
public Boolean expireAt(String key, Date date) {
return stringRedisTemplate.expireAt(key, date);
}
/**
* 查找匹配的key
*
* @param pattern
* @return
*/
public Set<String> keys(String pattern) {
return stringRedisTemplate.keys(pattern);
}
/**
* 将当前数据库的 key 移动到给定的数据库 db 当中
*
* @param key
* @param dbIndex
* @return
*/
public Boolean move(String key, int dbIndex) {
return stringRedisTemplate.move(key, dbIndex);
}
/**
* 移除 key 的过期时间,key 将持久保持
*
* @param key
* @return
*/
public Boolean persist(String key) {
return stringRedisTemplate.persist(key);
}
/**
* 返回 key 的剩余的过期时间
*
* @param key
* @param unit
* @return
*/
public Long getExpire(String key, TimeUnit unit) {
return stringRedisTemplate.getExpire(key, unit);
}
/**
* 返回 key 的剩余的过期时间
*
* @param key
* @return
*/
public Long getExpire(String key) {
return stringRedisTemplate.getExpire(key);
}
/**
* 从当前数据库中随机返回一个 key
*
* @return
*/
public String randomKey() {
return stringRedisTemplate.randomKey();
}
/**
* 修改 key 的名称
*
* @param oldKey
* @param newKey
*/
public void rename(String oldKey, String newKey) {
stringRedisTemplate.rename(oldKey, newKey);
}
/**
* 仅当 newkey 不存在时,将 oldKey 改名为 newkey
*
* @param oldKey
* @param newKey
* @return
*/
public Boolean renameIfAbsent(String oldKey, String newKey) {
return stringRedisTemplate.renameIfAbsent(oldKey, newKey);
}
/**
* 返回 key 所储存的值的类型
*
* @param key
* @return
*/
public DataType type(String key) {
return stringRedisTemplate.type(key);
}
/** -------------------string相关操作--------------------- */
/**
* 设置指定 key 的值
* @param key
* @param value
*/
public void set(String key, String value) {
stringRedisTemplate.opsForValue().set(key, value);
}
/**
* 获取指定 key 的值
* @param key
* @return
*/
public String get(String key) {
return stringRedisTemplate.opsForValue().get(key);
}
/**
* 返回 key 中字符串值的子字符
* @param key
* @param start
* @param end
* @return
*/
public String getRange(String key, long start, long end) {
return stringRedisTemplate.opsForValue().get(key, start, end);
}
/**
* 将给定 key 的值设为 value ,并返回 key 的旧值(old value)
*
* @param key
* @param value
* @return
*/
public String getAndSet(String key, String value) {
return stringRedisTemplate.opsForValue().getAndSet(key, value);
}
/**
* 对 key 所储存的字符串值,获取指定偏移量上的位(bit)
*
* @param key
* @param offset
* @return
*/
public Boolean getBit(String key, long offset) {
return stringRedisTemplate.opsForValue().getBit(key, offset);
}
/**
* 批量获取
*
* @param keys
* @return
*/
public List<String> multiGet(Collection<String> keys) {
return stringRedisTemplate.opsForValue().multiGet(keys);
}
/**
* 设置ASCII码, 字符串'a'的ASCII码是97, 转为二进制是'01100001', 此方法是将二进制第offset位值变为value
*
* @param key
* @param
* @param value
* 值,true为1, false为0
* @return
*/
public boolean setBit(String key, long offset, boolean value) {
return stringRedisTemplate.opsForValue().setBit(key, offset, value);
}
/**
* 将值 value 关联到 key ,并将 key 的过期时间设为 timeout
*
* @param key
* @param value
* @param timeout
* 过期时间
* @param unit
* 时间单位, 天:TimeUnit.DAYS 小时:TimeUnit.HOURS 分钟:TimeUnit.MINUTES
* 秒:TimeUnit.SECONDS 毫秒:TimeUnit.MILLISECONDS
*/
public void setEx(String key, String value, long timeout, TimeUnit unit) {
stringRedisTemplate.opsForValue().set(key, value, timeout, unit);
}
/**
* 只有在 key 不存在时设置 key 的值
*
* @param key
* @param value
* @return 之前已经存在返回false,不存在返回true
*/
public boolean setIfAbsent(String key, String value) {
return stringRedisTemplate.opsForValue().setIfAbsent(key, value);
}
/**
* 用 value 参数覆写给定 key 所储存的字符串值,从偏移量 offset 开始
*
* @param key
* @param value
* @param offset
* 从指定位置开始覆写
*/
public void setRange(String key, String value, long offset) {
stringRedisTemplate.opsForValue().set(key, value, offset);
}
/**
* 获取字符串的长度
*
* @param key
* @return
*/
public Long size(String key) {
return stringRedisTemplate.opsForValue().size(key);
}
/**
* 批量添加
*
* @param maps
*/
public void multiSet(Map<String, String> maps) {
stringRedisTemplate.opsForValue().multiSet(maps);
}
/**
* 同时设置一个或多个 key-value 对,当且仅当所有给定 key 都不存在
*
* @param maps
* @return 之前已经存在返回false,不存在返回true
*/
public boolean multiSetIfAbsent(Map<String, String> maps) {
return stringRedisTemplate.opsForValue().multiSetIfAbsent(maps);
}
/**
* 增加(自增长), 负数则为自减
*
* @param key
* @param
* @return
*/
public Long incrBy(String key, long increment) {
return stringRedisTemplate.opsForValue().increment(key, increment);
}
/**
*
* @param key
* @param
* @return
*/
public Double incrByFloat(String key, double increment) {
return stringRedisTemplate.opsForValue().increment(key, increment);
}
/**
* 追加到末尾
*
* @param key
* @param value
* @return
*/
public Integer append(String key, String value) {
return stringRedisTemplate.opsForValue().append(key, value);
}
/** -------------------hash相关操作------------------------- */
/**
* 获取存储在哈希表中指定字段的值
*
* @param key
* @param field
* @return
*/
public Object hGet(String key, String field) {
return stringRedisTemplate.opsForHash().get(key, field);
}
/**
* 获取所有给定字段的值
*
* @param key
* @return
*/
public Map<Object, Object> hGetAll(String key) {
return stringRedisTemplate.opsForHash().entries(key);
}
/**
* 获取所有给定字段的值
*
* @param key
* @param fields
* @return
*/
public List<Object> hMultiGet(String key, Collection<Object> fields) {
return stringRedisTemplate.opsForHash().multiGet(key, fields);
}
public void hPut(String key, String hashKey, String value) {
stringRedisTemplate.opsForHash().put(key, hashKey, value);
}
public void hPutAll(String key, Map<String, String> maps) {
stringRedisTemplate.opsForHash().putAll(key, maps);
}
/**
* 仅当hashKey不存在时才设置
*
* @param key
* @param hashKey
* @param value
* @return
*/
public Boolean hPutIfAbsent(String key, String hashKey, String value) {
return stringRedisTemplate.opsForHash().putIfAbsent(key, hashKey, value);
}
/**
* 加锁
*
* @param name
* @param expire
* @return
*/
public String tryLock(String name, long expire) {
name = name + "_lock";
String token = UUID.randomUUID().toString();
RedisConnectionFactory factory = stringRedisTemplate.getConnectionFactory();
RedisConnection conn = factory.getConnection();
try {
//参考redis命令:在redis中存入数据 数据明 uuid token 为锁的名字
// 因为这个数据的名字都是name+_locak 所以每次调用加锁方法setnx 只有一个成功调用的才能才能成功的保存的一个锁数据,其他的只能无法设置
//set key value [EX seconds] [PX milliseconds] [NX|XX]
Boolean result = conn.set(
name.getBytes(),
token.getBytes(),
Expiration.from(expire, TimeUnit.MILLISECONDS),
RedisStringCommands.SetOption.SET_IF_ABSENT //NX
);
if (result != null && result)
return token;
} finally {
RedisConnectionUtils.releaseConnection(conn, factory,false);
}
return null;
}
/**
* 删除一个或多个哈希表字段
*
* @param key
* @param fields
* @return
*/
public Long hDelete(String key, Object... fields) {
return stringRedisTemplate.opsForHash().delete(key, fields);
}
/**
* 查看哈希表 key 中,指定的字段是否存在
*
* @param key
* @param field
* @return
*/
public boolean hExists(String key, String field) {
return stringRedisTemplate.opsForHash().hasKey(key, field);
}
/**
* 为哈希表 key 中的指定字段的整数值加上增量 increment
*
* @param key
* @param field
* @param increment
* @return
*/
public Long hIncrBy(String key, Object field, long increment) {
return stringRedisTemplate.opsForHash().increment(key, field, increment);
}
/**
* 为哈希表 key 中的指定字段的整数值加上增量 increment
*
* @param key
* @param field
* @param delta
* @return
*/
public Double hIncrByFloat(String key, Object field, double delta) {
return stringRedisTemplate.opsForHash().increment(key, field, delta);
}
/**
* 获取所有哈希表中的字段
*
* @param key
* @return
*/
public Set<Object> hKeys(String key) {
return stringRedisTemplate.opsForHash().keys(key);
}
/**
* 获取哈希表中字段的数量
*
* @param key
* @return
*/
public Long hSize(String key) {
return stringRedisTemplate.opsForHash().size(key);
}
/**
* 获取哈希表中所有值
*
* @param key
* @return
*/
public List<Object> hValues(String key) {
return stringRedisTemplate.opsForHash().values(key);
}
/**
* 迭代哈希表中的键值对
*
* @param key
* @param options
* @return
*/
public Cursor<Map.Entry<Object, Object>> hScan(String key, ScanOptions options) {
return stringRedisTemplate.opsForHash().scan(key, options);
}
/** ------------------------list相关操作---------------------------- */
/**
* 通过索引获取列表中的元素
*
* @param key
* @param index
* @return
*/
public String lIndex(String key, long index) {
return stringRedisTemplate.opsForList().index(key, index);
}
/**
* 获取列表指定范围内的元素
*
* @param key
* @param start
* 开始位置, 0是开始位置
* @param end
* 结束位置, -1返回所有
* @return
*/
public List<String> lRange(String key, long start, long end) {
return stringRedisTemplate.opsForList().range(key, start, end);
}
/**
* 存储在list头部
*
* @param key
* @param value
* @return
*/
public Long lLeftPush(String key, String value) {
return stringRedisTemplate.opsForList().leftPush(key, value);
}
/**
*
* @param key
* @param value
* @return
*/
public Long lLeftPushAll(String key, String... value) {
return stringRedisTemplate.opsForList().leftPushAll(key, value);
}
/**
*
* @param key
* @param value
* @return
*/
public Long lLeftPushAll(String key, Collection<String> value) {
return stringRedisTemplate.opsForList().leftPushAll(key, value);
}
/**
* 当list存在的时候才加入
*
* @param key
* @param value
* @return
*/
public Long lLeftPushIfPresent(String key, String value) {
return stringRedisTemplate.opsForList().leftPushIfPresent(key, value);
}
/**
* 如果pivot存在,再pivot前面添加
*
* @param key
* @param pivot
* @param value
* @return
*/
public Long lLeftPush(String key, String pivot, String value) {
return stringRedisTemplate.opsForList().leftPush(key, pivot, value);
}
/**
*
* @param key
* @param value
* @return
*/
public Long lRightPush(String key, String value) {
return stringRedisTemplate.opsForList().rightPush(key, value);
}
/**
*
* @param key
* @param value
* @return
*/
public Long lRightPushAll(String key, String... value) {
return stringRedisTemplate.opsForList().rightPushAll(key, value);
}
/**
*
* @param key
* @param value
* @return
*/
public Long lRightPushAll(String key, Collection<String> value) {
return stringRedisTemplate.opsForList().rightPushAll(key, value);
}
/**
* 为已存在的列表添加值
*
* @param key
* @param value
* @return
*/
public Long lRightPushIfPresent(String key, String value) {
return stringRedisTemplate.opsForList().rightPushIfPresent(key, value);
}
/**
* 在pivot元素的右边添加值
*
* @param key
* @param pivot
* @param value
* @return
*/
public Long lRightPush(String key, String pivot, String value) {
return stringRedisTemplate.opsForList().rightPush(key, pivot, value);
}
/**
* 通过索引设置列表元素的值
*
* @param key
* @param index
* 位置
* @param value
*/
public void lSet(String key, long index, String value) {
stringRedisTemplate.opsForList().set(key, index, value);
}
/**
* 移出并获取列表的第一个元素
*
* @param key
* @return 删除的元素
*/
public String lLeftPop(String key) {
return stringRedisTemplate.opsForList().leftPop(key);
}
/**
* 移出并获取列表的第一个元素, 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止
*
* @param key
* @param timeout
* 等待时间
* @param unit
* 时间单位
* @return
*/
public String lBLeftPop(String key, long timeout, TimeUnit unit) {
return stringRedisTemplate.opsForList().leftPop(key, timeout, unit);
}
/**
* 移除并获取列表最后一个元素
*
* @param key
* @return 删除的元素
*/
public String lRightPop(String key) {
return stringRedisTemplate.opsForList().rightPop(key);
}
/**
* 移出并获取列表的最后一个元素, 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止
*
* @param key
* @param timeout
* 等待时间
* @param unit
* 时间单位
* @return
*/
public String lBRightPop(String key, long timeout, TimeUnit unit) {
return stringRedisTemplate.opsForList().rightPop(key, timeout, unit);
}
/**
* 移除列表的最后一个元素,并将该元素添加到另一个列表并返回
*
* @param sourceKey
* @param destinationKey
* @return
*/
public String lRightPopAndLeftPush(String sourceKey, String destinationKey) {
return stringRedisTemplate.opsForList().rightPopAndLeftPush(sourceKey,
destinationKey);
}
/**
* 从列表中弹出一个值,将弹出的元素插入到另外一个列表中并返回它; 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止
*
* @param sourceKey
* @param destinationKey
* @param timeout
* @param unit
* @return
*/
public String lBRightPopAndLeftPush(String sourceKey, String destinationKey,
long timeout, TimeUnit unit) {
return stringRedisTemplate.opsForList().rightPopAndLeftPush(sourceKey,
destinationKey, timeout, unit);
}
/**
* 删除集合中值等于value得元素
*
* @param key
* @param index
* index=0, 删除所有值等于value的元素; index>0, 从头部开始删除第一个值等于value的元素;
* index<0, 从尾部开始删除第一个值等于value的元素;
* @param value
* @return
*/
public Long lRemove(String key, long index, String value) {
return stringRedisTemplate.opsForList().remove(key, index, value);
}
/**
* 裁剪list
*
* @param key
* @param start
* @param end
*/
public void lTrim(String key, long start, long end) {
stringRedisTemplate.opsForList().trim(key, start, end);
}
/**
* 获取列表长度
*
* @param key
* @return
*/
public Long lLen(String key) {
return stringRedisTemplate.opsForList().size(key);
}
/** --------------------set相关操作-------------------------- */
/**
* set添加元素
*
* @param key
* @param values
* @return
*/
public Long sAdd(String key, String... values) {
return stringRedisTemplate.opsForSet().add(key, values);
}
/**
* set移除元素
*
* @param key
* @param values
* @return
*/
public Long sRemove(String key, Object... values) {
return stringRedisTemplate.opsForSet().remove(key, values);
}
/**
* 移除并返回集合的一个随机元素
*
* @param key
* @return
*/
public String sPop(String key) {
return stringRedisTemplate.opsForSet().pop(key);
}
/**
* 将元素value从一个集合移到另一个集合
*
* @param key
* @param value
* @param destKey
* @return
*/
public Boolean sMove(String key, String value, String destKey) {
return stringRedisTemplate.opsForSet().move(key, value, destKey);
}
/**
* 获取集合的大小
*
* @param key
* @return
*/
public Long sSize(String key) {
return stringRedisTemplate.opsForSet().size(key);
}
/**
* 判断集合是否包含value
*
* @param key
* @param value
* @return
*/
public Boolean sIsMember(String key, Object value) {
return stringRedisTemplate.opsForSet().isMember(key, value);
}
/**
* 获取两个集合的交集
*
* @param key
* @param otherKey
* @return
*/
public Set<String> sIntersect(String key, String otherKey) {
return stringRedisTemplate.opsForSet().intersect(key, otherKey);
}
/**
* 获取key集合与多个集合的交集
*
* @param key
* @param otherKeys
* @return
*/
public Set<String> sIntersect(String key, Collection<String> otherKeys) {
return stringRedisTemplate.opsForSet().intersect(key, otherKeys);
}
/**
* key集合与otherKey集合的交集存储到destKey集合中
*
* @param key
* @param otherKey
* @param destKey
* @return
*/
public Long sIntersectAndStore(String key, String otherKey, String destKey) {
return stringRedisTemplate.opsForSet().intersectAndStore(key, otherKey,
destKey);
}
/**
* key集合与多个集合的交集存储到destKey集合中
*
* @param key
* @param otherKeys
* @param destKey
* @return
*/
public Long sIntersectAndStore(String key, Collection<String> otherKeys,
String destKey) {
return stringRedisTemplate.opsForSet().intersectAndStore(key, otherKeys,
destKey);
}
/**
* 获取两个集合的并集
*
* @param key
* @param otherKeys
* @return
*/
public Set<String> sUnion(String key, String otherKeys) {
return stringRedisTemplate.opsForSet().union(key, otherKeys);
}
/**
* 获取key集合与多个集合的并集
*
* @param key
* @param otherKeys
* @return
*/
public Set<String> sUnion(String key, Collection<String> otherKeys) {
return stringRedisTemplate.opsForSet().union(key, otherKeys);
}
/**
* key集合与otherKey集合的并集存储到destKey中
*
* @param key
* @param otherKey
* @param destKey
* @return
*/
public Long sUnionAndStore(String key, String otherKey, String destKey) {
return stringRedisTemplate.opsForSet().unionAndStore(key, otherKey, destKey);
}
/**
* key集合与多个集合的并集存储到destKey中
*
* @param key
* @param otherKeys
* @param destKey
* @return
*/
public Long sUnionAndStore(String key, Collection<String> otherKeys,
String destKey) {
return stringRedisTemplate.opsForSet().unionAndStore(key, otherKeys, destKey);
}
/**
* 获取两个集合的差集
*
* @param key
* @param otherKey
* @return
*/
public Set<String> sDifference(String key, String otherKey) {
return stringRedisTemplate.opsForSet().difference(key, otherKey);
}
/**
* 获取key集合与多个集合的差集
*
* @param key
* @param otherKeys
* @return
*/
public Set<String> sDifference(String key, Collection<String> otherKeys) {
return stringRedisTemplate.opsForSet().difference(key, otherKeys);
}
/**
* key集合与otherKey集合的差集存储到destKey中
*
* @param key
* @param otherKey
* @param destKey
* @return
*/
public Long sDifference(String key, String otherKey, String destKey) {
return stringRedisTemplate.opsForSet().differenceAndStore(key, otherKey,
destKey);
}
/**
* key集合与多个集合的差集存储到destKey中
*
* @param key
* @param otherKeys
* @param destKey
* @return
*/
public Long sDifference(String key, Collection<String> otherKeys,
String destKey) {
return stringRedisTemplate.opsForSet().differenceAndStore(key, otherKeys,
destKey);
}
/**
* 获取集合所有元素
*
* @param key
* @param
* @param
* @return
*/
public Set<String> setMembers(String key) {
return stringRedisTemplate.opsForSet().members(key);
}
/**
* 随机获取集合中的一个元素
*
* @param key
* @return
*/
public String sRandomMember(String key) {
return stringRedisTemplate.opsForSet().randomMember(key);
}
/**
* 随机获取集合中count个元素
*
* @param key
* @param count
* @return
*/
public List<String> sRandomMembers(String key, long count) {
return stringRedisTemplate.opsForSet().randomMembers(key, count);
}
/**
* 随机获取集合中count个元素并且去除重复的
*
* @param key
* @param count
* @return
*/
public Set<String> sDistinctRandomMembers(String key, long count) {
return stringRedisTemplate.opsForSet().distinctRandomMembers(key, count);
}
/**
*
* @param key
* @param options
* @return
*/
public Cursor<String> sScan(String key, ScanOptions options) {
return stringRedisTemplate.opsForSet().scan(key, options);
}
/**------------------zSet相关操作--------------------------------*/
/**
* 添加元素,有序集合是按照元素的score值由小到大排列
*
* @param key
* @param value
* @param score
* @return
*/
public Boolean zAdd(String key, String value, double score) {
return stringRedisTemplate.opsForZSet().add(key, value, score);
}
/**
*
* @param key
* @param values
* @return
*/
public Long zAdd(String key, Set<TypedTuple<String>> values) {
return stringRedisTemplate.opsForZSet().add(key, values);
}
/**
*
* @param key
* @param values
* @return
*/
public Long zRemove(String key, Object... values) {
return stringRedisTemplate.opsForZSet().remove(key, values);
}
public Long zRemove(String key, Collection<String> values) {
if(values!=null&&!values.isEmpty()){
Object[] objs = values.toArray(new Object[values.size()]);
return stringRedisTemplate.opsForZSet().remove(key, objs);
}
return 0L;
}
/**
* 增加元素的score值,并返回增加后的值
*
* @param key
* @param value
* @param delta
* @return
*/
public Double zIncrementScore(String key, String value, double delta) {
return stringRedisTemplate.opsForZSet().incrementScore(key, value, delta);
}
/**
* 返回元素在集合的排名,有序集合是按照元素的score值由小到大排列
*
* @param key
* @param value
* @return 0表示第一位
*/
public Long zRank(String key, Object value) {
return stringRedisTemplate.opsForZSet().rank(key, value);
}
/**
* 返回元素在集合的排名,按元素的score值由大到小排列
*
* @param key
* @param value
* @return
*/
public Long zReverseRank(String key, Object value) {
return stringRedisTemplate.opsForZSet().reverseRank(key, value);
}
/**
* 获取集合的元素, 从小到大排序
*
* @param key
* @param start
* 开始位置
* @param end
* 结束位置, -1查询所有
* @return
*/
public Set<String> zRange(String key, long start, long end) {
return stringRedisTemplate.opsForZSet().range(key, start, end);
}
/**
* 获取zset集合的所有元素, 从小到大排序
*
*/
public Set<String> zRangeAll(String key) {
return zRange(key,0,-1);
}
/**
* 获取集合元素, 并且把score值也获取
*
* @param key
* @param start
* @param end
* @return
*/
public Set<TypedTuple<String>> zRangeWithScores(String key, long start,
long end) {
return stringRedisTemplate.opsForZSet().rangeWithScores(key, start, end);
}
/**
* 根据Score值查询集合元素
*
* @param key
* @param min
* 最小值
* @param max
* 最大值
* @return
*/
public Set<String> zRangeByScore(String key, double min, double max) {
return stringRedisTemplate.opsForZSet().rangeByScore(key, min, max);
}
/**
* 根据Score值查询集合元素, 从小到大排序
*
* @param key
* @param min
* 最小值
* @param max
* 最大值
* @return
*/
public Set<TypedTuple<String>> zRangeByScoreWithScores(String key,
double min, double max) {
return stringRedisTemplate.opsForZSet().rangeByScoreWithScores(key, min, max);
}
/**
*
* @param key
* @param min
* @param max
* @param start
* @param end
* @return
*/
public Set<TypedTuple<String>> zRangeByScoreWithScores(String key,
double min, double max, long start, long end) {
return stringRedisTemplate.opsForZSet().rangeByScoreWithScores(key, min, max,
start, end);
}
/**
* 获取集合的元素, 从大到小排序
*
* @param key
* @param start
* @param end
* @return
*/
public Set<String> zReverseRange(String key, long start, long end) {
return stringRedisTemplate.opsForZSet().reverseRange(key, start, end);
}
public Set<String> zReverseRangeByScore(String key, long min, long max) {
return stringRedisTemplate.opsForZSet().reverseRangeByScore(key, min, max);
}
/**
* 获取集合的元素, 从大到小排序, 并返回score值
*
* @param key
* @param start
* @param end
* @return
*/
public Set<TypedTuple<String>> zReverseRangeWithScores(String key,
long start, long end) {
return stringRedisTemplate.opsForZSet().reverseRangeWithScores(key, start,
end);
}
/**
* 根据Score值查询集合元素, 从大到小排序
*
* @param key
* @param min
* @param max
* @return
*/
public Set<String> zReverseRangeByScore(String key, double min,
double max) {
return stringRedisTemplate.opsForZSet().reverseRangeByScore(key, min, max);
}
/**
* 根据Score值查询集合元素, 从大到小排序
*
* @param key
* @param min
* @param max
* @return
*/
public Set<TypedTuple<String>> zReverseRangeByScoreWithScores(
String key, double min, double max) {
return stringRedisTemplate.opsForZSet().reverseRangeByScoreWithScores(key,
min, max);
}
/**
*
* @param key
* @param min
* @param max
* @param start
* @param end
* @return
*/
public Set<String> zReverseRangeByScore(String key, double min,
double max, long start, long end) {
return stringRedisTemplate.opsForZSet().reverseRangeByScore(key, min, max,
start, end);
}
/**
* 根据score值获取集合元素数量
*
* @param key
* @param min
* @param max
* @return
*/
public Long zCount(String key, double min, double max) {
return stringRedisTemplate.opsForZSet().count(key, min, max);
}
/**
* 获取集合大小
*
* @param key
* @return
*/
public Long zSize(String key) {
return stringRedisTemplate.opsForZSet().size(key);
}
/**
* 获取集合大小
*
* @param key
* @return
*/
public Long zZCard(String key) {
return stringRedisTemplate.opsForZSet().zCard(key);
}
/**
* 获取集合中value元素的score值
*
* @param key
* @param value
* @return
*/
public Double zScore(String key, Object value) {
return stringRedisTemplate.opsForZSet().score(key, value);
}
/**
* 移除指定索引位置的成员
*
* @param key
* @param start
* @param end
* @return
*/
public Long zRemoveRange(String key, long start, long end) {
return stringRedisTemplate.opsForZSet().removeRange(key, start, end);
}
/**
* 根据指定的score值的范围来移除成员
*
* @param key
* @param min
* @param max
* @return
*/
public Long zRemoveRangeByScore(String key, double min, double max) {
return stringRedisTemplate.opsForZSet().removeRangeByScore(key, min, max);
}
/**
* 获取key和otherKey的并集并存储在destKey中
*
* @param key
* @param otherKey
* @param destKey
* @return
*/
public Long zUnionAndStore(String key, String otherKey, String destKey) {
return stringRedisTemplate.opsForZSet().unionAndStore(key, otherKey, destKey);
}
/**
*
* @param key
* @param otherKeys
* @param destKey
* @return
*/
public Long zUnionAndStore(String key, Collection<String> otherKeys,
String destKey) {
return stringRedisTemplate.opsForZSet()
.unionAndStore(key, otherKeys, destKey);
}
/**
* 交集
*
* @param key
* @param otherKey
* @param destKey
* @return
*/
public Long zIntersectAndStore(String key, String otherKey,
String destKey) {
return stringRedisTemplate.opsForZSet().intersectAndStore(key, otherKey,
destKey);
}
/**
* 交集
*
* @param key
* @param otherKeys
* @param destKey
* @return
*/
public Long zIntersectAndStore(String key, Collection<String> otherKeys,
String destKey) {
return stringRedisTemplate.opsForZSet().intersectAndStore(key, otherKeys,
destKey);
}
/**
*
* @param key
* @param options
* @return
*/
public Cursor<TypedTuple<String>> zScan(String key, ScanOptions options) {
return stringRedisTemplate.opsForZSet().scan(key, options);
}
/**
* 扫描主键,建议使用
* @param patten
* @return
*/
public Set<String> scan(String patten){
Set<String> keys = stringRedisTemplate.execute((RedisCallback<Set<String>>) connection -> {
Set<String> result = new HashSet<>();
try (Cursor<byte[]> cursor = connection.scan(new ScanOptions.ScanOptionsBuilder()
.match(patten).count(10000).build())) {
while (cursor.hasNext()) {
result.add(new String(cursor.next()));
}
} catch (IOException e) {
e.printStackTrace();
}
return result;
});
return keys;
}
/**
* 管道技术,提高性能
* @param type
* @param values
* @return
*/
public List<Object> lRightPushPipeline(String type,Collection<String> values){
List<Object> results = stringRedisTemplate.executePipelined(new RedisCallback<Object>() {
public Object doInRedis(RedisConnection connection) throws DataAccessException {
StringRedisConnection stringRedisConn = (StringRedisConnection)connection;
//集合转换数组
String[] strings = values.toArray(new String[values.size()]);
//直接批量发送
stringRedisConn.rPush(type, strings);
return null;
}
});
return results;
}
public List<Object> refreshWithPipeline(String future_key,String topic_key,Collection<String> values){
List<Object> objects = stringRedisTemplate.executePipelined(new RedisCallback<Object>() {
@Nullable
@Override
public Object doInRedis(RedisConnection redisConnection) throws DataAccessException {
StringRedisConnection stringRedisConnection = (StringRedisConnection)redisConnection;
String[] strings = values.toArray(new String[values.size()]);
stringRedisConnection.rPush(topic_key,strings);
stringRedisConnection.zRem(future_key,strings);
return null;
}
});
return objects;
}
}
这里的场景是微服务,任务模块也是,所以所有缓存的操作在这个模块做,在使用feign 对外抛出接口,并且数据库也是单独存在
配置文件
server:
port: 10001
spring:
application:
name: schedule
cloud:
nacos:
discovery:
server-addr: 192.168.249.132:8848
username: nacos
password: nacos
config:
server-addr: 192.168.249.132:8848
file-extension: yaml
main:
allow-bean-definition-overriding: true
### 上面是bootstrap.yaml的内容,主要配置nacos和服务名
##nacos中的配置信
spring:
# redis
redis:
host: 192.168.249.132
password: 222222
port: 6379
datasource:
driver-class-name: com.mysql.jdbc.Driver
url: jdbc:mysql://localhost:3306/leadnews_schedule?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC&useSSL=false
username: root
password: 111111
# 设置Mapper接口所对应的XML文件位置,如果你在Mapper接口中有自定义方法,需要进行该配置
mybatis-plus:
mapper-locations: classpath*:mapper/*.xml
# 设置别名包扫描路径,通过该属性可以给包中的类注册别名
type-aliases-package: com.heima.leadnews.schedule.pojos
实现MybatisPlus快速完成低代码框架
因为日志log类设计到多个操作都会写入log,所以之前的log表有乐观锁的版本字段,启动类中添加Mp集合的乐观锁逻辑
@EnableScheduling
@SpringBootApplication
@MapperScan("com.heima.schedule.mapper")
public class ScheduleApplication {
public static void main(String[] args) {
SpringApplication.run(ScheduleApplication.class,args);
}
/**
* mybatis-plus乐观锁支持
* @return
*/
@Bean
public MybatisPlusInterceptor optimisticLockerInterceptor(){
MybatisPlusInterceptor interceptor = new MybatisPlusInterceptor();
interceptor.addInnerInterceptor(new OptimisticLockerInnerInterceptor());
return interceptor;
}
}
指定乐观锁版本字段
在taskservice中实现业务,既然是实现延迟队列,那么一定有添加,取消,消费的基本操作
public interface TaskService extends IService<Taskinfo> {
// 返回当任务id
public Long addTask(Task task);
//todo 无法从redis删除数据
public boolean cancelTask(long taskid);
public Task poll(int type,int priority);
}
实现
@Slf4j
@Service
public class TaskServiceImpl extends ServiceImpl<TaskinfoMapper, Taskinfo> implements TaskService {
@Autowired
TaskinfoLogsMapper taskinfoLogsMapper;
@Autowired
CacheService cacheService;
/**
* 添加任务到数据库中 并且日志也需要传报
* @param task
* @return
*/
@Transactional
@Override
public Long addTask(Task task) {
//1.添加任务到数据库中
// 传递过来的是一个dto
long tinfoId= saveSql(task);
if (tinfoId!=0) {
task.setTaskId(tinfoId);
saveCache(task);
return tinfoId;
}
else{
throw new RuntimeException("保存任务到数据库失败");
}
//避免redis和sql不一致
}
/**
* 删除任务并且保证日志的更新
* @param taskid 保存的时候日志id任务id设置的同一个值 所以取数据的时候也可以这样
* @return
*/
/**
* 取消任务
* @param taskId
* @return
*/
@Override
public boolean cancelTask(long taskId) {
boolean flag = false;
//删除任务,更新日志
Task task = updateDb(taskId,ScheduleConstants.EXECUTED);
//删除redis的数据
if(task != null){
removeTaskFromCache(task);
flag = true;
}
return false;
}
/**
* 消费任务
* @param type
* @param priority
* @return
*/
@Override
public Task poll(int type,int priority) {
Task task = null;
try {
String key = type+"-"+priority;
String task_json = cacheService.lRightPop(ScheduleConstants.TOPIC + key);
if(StringUtils.isNotBlank(task_json)){
task = JSON.parseObject(task_json, Task.class);
if (task.getTaskId()!=null){
//更新数据库信息
System.out.println(task.getTaskId());
updateDb(task.getTaskId(),ScheduleConstants.EXECUTED);
}else {
System.out.println("没有id信息");
}
}
}catch (Exception e){
e.printStackTrace();
log.error("poll task exception");
}
return task;
}
/**
* 删除redis中的任务数据
* @param task
*/
private void removeTaskFromCache(Task task) {
String key = task.getTaskType()+"-"+task.getPriority();
String s = JSON.toJSONString(task.getTaskType()+"-"+task.getPriority()+task);
//这里不做区分因为之前的数据一定是小于现在时间得
cacheService.lRemove(ScheduleConstants.TOPIC+key,0,s);
cacheService.zRemove(ScheduleConstants.FUTURE+key, s);
}
/**
* 删除任务,更新任务日志状态
* @param taskId
* @param status
* @return
*/
private Task updateDb(long taskId, int status) {
Task task = null;
try {
//删除任务
removeById(taskId);
TaskinfoLogs taskinfoLogs = taskinfoLogsMapper.selectById(taskId);
taskinfoLogs.setStatus(status);
taskinfoLogsMapper.updateById(taskinfoLogs);
task = new Task();
BeanUtils.copyProperties(taskinfoLogs,task);
task.setExecuteTime(taskinfoLogs.getExecuteTime().getTime());
}catch (Exception e){
log.error("task cancel exception taskid"+taskId);
}
return task;
}
/**
* redis 操作必须要和数据库操作区分开保持数据一致
* 只把将要5分钟后执行的时间加入队列,如果从设置定时时间开始加,
* 那么redis中将会保存很多还有一俩天才执行的任务,并且没每分钟做数据刷新的时候资源消耗变大
* @param task
* @return
*/
public void saveCache(Task task){
// 获取5分钟后的时间
Calendar calendar = Calendar.getInstance();
calendar.add(Calendar.MINUTE,5);
long furtime = calendar.getTime().getTime();
//添加任务到redis
if (task.getExecuteTime()<=System.currentTimeMillis())
{
// 2.1 如果任务时间小于等于当前时间存入list 立即执行
String key=ScheduleConstants.TOPIC+ task.getTaskType()+"-"+task.getPriority();
cacheService.lLeftPush(key, JSON.toJSONString(task));
}
//2.2 如果任务的执行时间大于当前时间 && 小于等于预设时间(未来5分钟) 存入zset中
else if(task.getExecuteTime()>System.currentTimeMillis()&&task.getExecuteTime()<=furtime){
String key=ScheduleConstants.FUTURE+ task.getTaskType()+"-"+task.getPriority();
cacheService.zAdd( key, JSON.toJSONString(task), task.getExecuteTime());
}
}
public long saveSql(Task task){
//1.添加任务到数据库中
// 传递过来的是一个dto
Taskinfo taskinfo = taskTransinfo(task);
long takeId=0;
try{
save(taskinfo);
//1.1 对日志进行保存
takeId=taskinfo.getTaskId();
TaskinfoLogs logs = InitaskLogs(taskinfo);
taskinfoLogsMapper.insert(logs);
return takeId;
}catch (Exception e){
throw new IllegalStateException("保存任务到数据库失败");
}
}
//dto 和pojo 之间有些属性不能bean转换
public Taskinfo taskTransinfo(Task task) {
Taskinfo taskinfo = new Taskinfo();
BeanUtils.copyProperties(task, taskinfo);
//info对象中的执行时间是date 这里和long 进行转换
taskinfo.setExecuteTime(new Date(task.getExecuteTime()));
return taskinfo;
}
/**
* 日志进行初始化
* @param taskinfo
* @return
*/
public TaskinfoLogs InitaskLogs(Taskinfo taskinfo) {
TaskinfoLogs taskinfoLogs = new TaskinfoLogs();
BeanUtils.copyProperties(taskinfo, taskinfoLogs);
// 初始化乐观锁的版本号
taskinfoLogs.setVersion(1);
taskinfoLogs.setStatus(ScheduleConstants.SCHEDULED);
return taskinfoLogs;
}
/**
* 数据同步刷新
* 每隔一分钟坚持数据是否快到执行时间
*/
/**
* 未来数据定时刷新
*/
@Scheduled(cron = "0 */1 * * * ?")
public void refresh(){
String token = cacheService.tryLock("FUTURE_TASK_SYNC", 1000 * 30);
if(StringUtils.isNotBlank(token)){
log.info("未来数据定时刷新---定时任务");
//获取所有未来数据的集合key
Set<String> futureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");
for (String futureKey : futureKeys) {//future_100_50
//获取当前数据的key topic
String topicKey = ScheduleConstants.TOPIC+futureKey.split(ScheduleConstants.FUTURE)[1];
//按照key和分值查询符合条件的数据
Set<String> tasks = cacheService.zRangeByScore(futureKey, 0, System.currentTimeMillis());
//同步数据
if(!tasks.isEmpty()){
cacheService.refreshWithPipeline(futureKey,topicKey,tasks);
log.info("成功的将"+futureKey+"刷新到了"+topicKey);
}
}
}
}
/**
* 将数据库中到到期的未来任务同步一遍
*/
@Scheduled(cron = "0 */5 * * * ?")
@PostConstruct//和启动类初始化同时执行
public void refreshData() {
clearCache();
Calendar calendar=Calendar.getInstance();
calendar.add(Calendar.MINUTE,5);
List<Taskinfo> taskinfoList = lambdaQuery().lt(Taskinfo::getExecuteTime, calendar.getTimeInMillis()).list();
// 数据的任务添加到redis
if(taskinfoList.size()>0&& taskinfoList!=null){
taskinfoList.forEach(i->{
Task task = new Task();
BeanUtils.copyProperties(i,task);
task.setExecuteTime(i.getExecuteTime().getTime());
//保存到保证数据库和redis的一个同步
addTask(task);
});
}
log.info("数据库和redis 进行同步");
}
public void clearCache(){
// 清楚缓存中的数据
Set<String> topicKeys = cacheService.scan(ScheduleConstants.TOPIC + "*");
Set<String> furtureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");
cacheService.delete(topicKeys);
cacheService.delete(furtureKeys);
}
}
逻辑 任务添加时候插入数据库,以及任务日志然后根据执行时间和系统设置预处理缓冲时间(这里指的是5分钟),取消任务时,删除任务数据,修改日志状态,其中redis删除数据,并且有定时刷新set队列,将时间满足的移动到list立即执行队列
对外抛出
@RequestMapping("/api/task")
@RestController
public class ScheduleClient implements IScheduleClient {
@Autowired
TaskService taskService;
@RequestMapping("/add")
@Override
public ResponseResult addTask(@RequestBody Task task) {
return ResponseResult.okResult(taskService.addTask(task));
}
@GetMapping("/{taskId}")
@Override
public ResponseResult cancelTask(@PathVariable("taskId") long taskid) {
return ResponseResult.okResult(taskService.cancelTask(taskid));
}
@GetMapping("/{type}/{priority}")
@Override
public ResponseResult poll( @PathVariable("type") int type,@PathVariable("priority") int priority) {
return ResponseResult.okResult(taskService.poll(type, priority));
}
}
feign模块添加对应调用者
@FeignClient(value = "schedule")
public interface IScheduleClient {
/**
*
* @param task
* @return 任务id
*/
@PostMapping("/api/v1/task/add")
public ResponseResult addTask(@RequestBody Task task);
/**
*
* @param taskid
* @return 是否成功
*/
@GetMapping("/api/v1/task/{taskId}")
public ResponseResult cancelTask(@PathVariable("taskId") long taskid);
@GetMapping("/api/v1/task/{type}/{priority}")
public ResponseResult poll( @PathVariable("type") int type,@PathVariable("priority") int priority);
}
发布文章的服务在完成文章的处理逻辑后,调用该模块的添加任务方法,根据执行时间放在哪一个队列,set/list,其中值得主义的是,数据表之间的参数字段是长比特类型,Mp映射也是,所以在其他模块需要调用该缓存模块方法时候,对传递的任务擦拭布参数进行字节序列化化调用者模块
@Override
@Async
public void addNewsToTask(Integer Newsid, Date published) {
log.info("addNewsToTask Newsid:"+Newsid+" published:"+published);
if (published == null||Newsid==null){
throw new IllegalArgumentException("传递参数不全");
}
Task task = new Task();
task.setExecuteTime(published.getTime());
task.setTaskType(TaskTypeEnum.NEWS_SCAN_TIME.getTaskType());
task.setPriority(TaskTypeEnum.NEWS_SCAN_TIME.getPriority());
WmNews news = new WmNews();
news.setId(Newsid);
task.setParameters(ProtostuffUtil.serialize(news));
schduleClient.addTask(task);
log.info("addNewsToTask success");
}
在调用feign api之前需要把对应的参数准备,其中包括序列化,而这里的序列化为bite采用的是第三方库
序列化工具对比
<dependency>
<groupId>io.protostuff</groupId>
<artifactId>protostuff-core</artifactId>
</dependency>
<dependency>
<groupId>io.protostuff</groupId>
<artifactId>protostuff-runtime</artifactId>
</dependency>