redis实现消息延迟队列

业务场景

在很多软件系统功能中都会出现定时任务的业务场景,比如提前点单,比如定时发布动态,文章等而出现这样的的定时的任务为延迟队任务

代码模块

任务的持久化一般都需要建立一个任务表和任务日志表,避免宕机导致任务失效,先新建立一个数据库,创建基本的任务表和任务日志表,其中的parameter设置为longbite,是防止消息使用json传递消耗较大,节省资源
redis实现消息延迟队列_第1张图片

参数是在任务中存储操作任务需要的关键信息,设置为比特位是更节省资源

模拟业务文章定时发布,前端传递了一个文章对象,其中包含了预期发布的时间redis实现消息延迟队列_第2张图片
传递的文章dto中包含了对应的文章信息,redis实现消息延迟队列_第3张图片我们需要做的就是根据审核内容进行保存在文章表,设置是否上架到用户端,如果携带的发布时间比现在要大,说明是延迟任务,那么此时就涉及到延迟任务的实现

代码片段

controller

主要是接收应用的http请求

@RestController
@RequestMapping("/api/v1/news")
public class NewsController {

@Autowired
    NewsService wmNewsService;
    @PostMapping("/list")
    public ResponseResult findAll(@RequestBody WmNewsPageReqDto dto){
        return  wmNewsService.findAll(dto);
    }
/**
* 文章的提交
*/
    @PostMapping("/submit")
    public ResponseResult submit(@RequestBody WmNewsDto dto){
        return wmNewsService.submitNews(dto);

    }

}

业务层Service

用于处理文章提交的逻辑


@Service
@Slf4j
@Transactional
public class WmNewsServiceImpl extends ServiceImpl<WmNewsMapper, WmNews> implements WmNewsService {

  
/**
* 自动扫描审核文章业务 这里不是重点不用关注
/

@Autowired
    WmTaskService taskService;//
    /**
     * 发布修改文章或保存为草稿
     * @param dto
     * @return
     */
    @Override
    public ResponseResult submitNews(WmNewsDto dto) {

        //0.条件判断
        if(dto == null || dto.getContent() == null){
            return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);
        }

        //1.保存或修改文章

        WmNews wmNews = new WmNews();
        //属性拷贝 属性名词和类型相同才能拷贝
        BeanUtils.copyProperties(dto,wmNews);
        //封面图片  list---> string
        if(dto.getImages() != null && dto.getImages().size() > 0){
            //[1dddfsd.jpg,sdlfjldk.jpg]-->   1dddfsd.jpg,sdlfjldk.jpg
            String imageStr = StringUtils.join(dto.getImages(), ",");
            wmNews.setImages(imageStr);
        }
        //如果当前封面类型为自动 -1
        if(dto.getType().equals(WemediaConstants.WM_NEWS_TYPE_AUTO)){
            wmNews.setType(null);
        }

        saveOrUpdateWmNews(wmNews);

        //2.判断是否为草稿  如果为草稿结束当前方法
        if(dto.getStatus().equals(WmNews.Status.NORMAL.getCode())){
            return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
        }

        //3.不是草稿,保存文章内容图片与素材的关系
        //获取到文章内容中的图片信息
        List<String> materials =  ectractUrlInfo(dto.getContent());
        saveRelativeInfoForContent(materials,wmNews.getId());

        //4.不是草稿,保存文章封面图片与素材的关系,如果当前布局是自动,需要匹配封面图片
        saveRelativeInfoForCover(dto,wmNews,materials);



/*
*
*上面都不用看,是对文章的处理逻辑,
*当对文章完成处理后
*/

//上面的一大堆都是对文章的处理逻辑
        if (wmNews.getId()!=null){
            taskService.addNewsToTask(wmNews.getId(),wmNews.getPublishTime());
        }




        return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);

    }


    }


}

文章处理的逻辑并不重要,重要的是完成对延迟任务的实现

所以重点关注定时任务,原本的模块是管理端完成文章的处理–>客户端的文章上架(保存到数据库还是修改库不需要关注),现在变成了:管理端完成了–>定时任务的处理–>时间到了–>客户端文章的处理,所以我们需要关注的就是任务处理的部分,因为这里假设的场景是微服务的场景下,所以就需要新建一个定时任务模块,并且将上述的taskService改为feign模块的远程调用接口

建立一个schedule 模块redis实现消息延迟队列_第4张图片

添加redis的依赖

     
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-data-redisartifactId>
        dependency>
        
        <dependency>
            <groupId>org.apache.commonsgroupId>
            <artifactId>commons-pool2artifactId>
        dependency>
        <dependency>
            <groupId>org.springframework.bootgroupId>
            <artifactId>spring-boot-starter-cacheartifactId>
        dependency>

2.实现思路redis实现消息延迟队列_第5张图片
添加一个任务对象到数据库,然后进行判断,如果执行时间<=当前的时间说明需要放入list队列,等待被消费者消费,如果大于当前时间,但是小于设置预设时间(如果大于预设时间,说明任务举例处理还很遥远, 不对其进行处理避免多余的io操作),说明是将要消费任务,使用set数据类型进行存储,并且使用时间错作为score,这样做到排序的效果

建立一个缓存service 集成spring cache

@Component
public class CacheService extends CachingConfigurerSupport {
    @Autowired
    private StringRedisTemplate stringRedisTemplate;

    public StringRedisTemplate getstringRedisTemplate() {
        return this.stringRedisTemplate;
    }

    /** -------------------key相关操作--------------------- */

    /**
     * 删除key
     *
     * @param key
     */
    public void delete(String key) {
        stringRedisTemplate.delete(key);
    }

    /**
     * 批量删除key
     *
     * @param keys
     */
    public void delete(Collection<String> keys) {
        stringRedisTemplate.delete(keys);
    }

    /**
     * 序列化key
     *
     * @param key
     * @return
     */
    public byte[] dump(String key) {
        return stringRedisTemplate.dump(key);
    }

    /**
     * 是否存在key
     *
     * @param key
     * @return
     */
    public Boolean exists(String key) {
        return stringRedisTemplate.hasKey(key);
    }

    /**
     * 设置过期时间
     *
     * @param key
     * @param timeout
     * @param unit
     * @return
     */
    public Boolean expire(String key, long timeout, TimeUnit unit) {
        return stringRedisTemplate.expire(key, timeout, unit);
    }

    /**
     * 设置过期时间
     *
     * @param key
     * @param date
     * @return
     */
    public Boolean expireAt(String key, Date date) {
        return stringRedisTemplate.expireAt(key, date);
    }

    /**
     * 查找匹配的key
     *
     * @param pattern
     * @return
     */
    public Set<String> keys(String pattern) {
        return stringRedisTemplate.keys(pattern);
    }

    /**
     * 将当前数据库的 key 移动到给定的数据库 db 当中
     *
     * @param key
     * @param dbIndex
     * @return
     */
    public Boolean move(String key, int dbIndex) {
        return stringRedisTemplate.move(key, dbIndex);
    }

    /**
     * 移除 key 的过期时间,key 将持久保持
     *
     * @param key
     * @return
     */
    public Boolean persist(String key) {
        return stringRedisTemplate.persist(key);
    }

    /**
     * 返回 key 的剩余的过期时间
     *
     * @param key
     * @param unit
     * @return
     */
    public Long getExpire(String key, TimeUnit unit) {
        return stringRedisTemplate.getExpire(key, unit);
    }

    /**
     * 返回 key 的剩余的过期时间
     *
     * @param key
     * @return
     */
    public Long getExpire(String key) {
        return stringRedisTemplate.getExpire(key);
    }

    /**
     * 从当前数据库中随机返回一个 key
     *
     * @return
     */
    public String randomKey() {
        return stringRedisTemplate.randomKey();
    }

    /**
     * 修改 key 的名称
     *
     * @param oldKey
     * @param newKey
     */
    public void rename(String oldKey, String newKey) {
        stringRedisTemplate.rename(oldKey, newKey);
    }

    /**
     * 仅当 newkey 不存在时,将 oldKey 改名为 newkey
     *
     * @param oldKey
     * @param newKey
     * @return
     */
    public Boolean renameIfAbsent(String oldKey, String newKey) {
        return stringRedisTemplate.renameIfAbsent(oldKey, newKey);
    }

    /**
     * 返回 key 所储存的值的类型
     *
     * @param key
     * @return
     */
    public DataType type(String key) {
        return stringRedisTemplate.type(key);
    }

    /** -------------------string相关操作--------------------- */

    /**
     * 设置指定 key 的值
     * @param key
     * @param value
     */
    public void set(String key, String value) {
        stringRedisTemplate.opsForValue().set(key, value);
    }

    /**
     * 获取指定 key 的值
     * @param key
     * @return
     */
    public String get(String key) {
        return stringRedisTemplate.opsForValue().get(key);
    }

    /**
     * 返回 key 中字符串值的子字符
     * @param key
     * @param start
     * @param end
     * @return
     */
    public String getRange(String key, long start, long end) {
        return stringRedisTemplate.opsForValue().get(key, start, end);
    }

    /**
     * 将给定 key 的值设为 value ,并返回 key 的旧值(old value)
     *
     * @param key
     * @param value
     * @return
     */
    public String getAndSet(String key, String value) {
        return stringRedisTemplate.opsForValue().getAndSet(key, value);
    }

    /**
     * 对 key 所储存的字符串值,获取指定偏移量上的位(bit)
     *
     * @param key
     * @param offset
     * @return
     */
    public Boolean getBit(String key, long offset) {
        return stringRedisTemplate.opsForValue().getBit(key, offset);
    }

    /**
     * 批量获取
     *
     * @param keys
     * @return
     */
    public List<String> multiGet(Collection<String> keys) {
        return stringRedisTemplate.opsForValue().multiGet(keys);
    }

    /**
     * 设置ASCII码, 字符串'a'的ASCII码是97, 转为二进制是'01100001', 此方法是将二进制第offset位值变为value
     *
     * @param key
     * @param
     * @param value
     *            值,true为1, false为0
     * @return
     */
    public boolean setBit(String key, long offset, boolean value) {
        return stringRedisTemplate.opsForValue().setBit(key, offset, value);
    }

    /**
     * 将值 value 关联到 key ,并将 key 的过期时间设为 timeout
     *
     * @param key
     * @param value
     * @param timeout
     *            过期时间
     * @param unit
     *            时间单位, 天:TimeUnit.DAYS 小时:TimeUnit.HOURS 分钟:TimeUnit.MINUTES
     *            秒:TimeUnit.SECONDS 毫秒:TimeUnit.MILLISECONDS
     */
    public void setEx(String key, String value, long timeout, TimeUnit unit) {
        stringRedisTemplate.opsForValue().set(key, value, timeout, unit);
    }

    /**
     * 只有在 key 不存在时设置 key 的值
     *
     * @param key
     * @param value
     * @return 之前已经存在返回false,不存在返回true
     */
    public boolean setIfAbsent(String key, String value) {
        return stringRedisTemplate.opsForValue().setIfAbsent(key, value);
    }

    /**
     * 用 value 参数覆写给定 key 所储存的字符串值,从偏移量 offset 开始
     *
     * @param key
     * @param value
     * @param offset
     *            从指定位置开始覆写
     */
    public void setRange(String key, String value, long offset) {
        stringRedisTemplate.opsForValue().set(key, value, offset);
    }

    /**
     * 获取字符串的长度
     *
     * @param key
     * @return
     */
    public Long size(String key) {
        return stringRedisTemplate.opsForValue().size(key);
    }

    /**
     * 批量添加
     *
     * @param maps
     */
    public void multiSet(Map<String, String> maps) {
        stringRedisTemplate.opsForValue().multiSet(maps);
    }

    /**
     * 同时设置一个或多个 key-value 对,当且仅当所有给定 key 都不存在
     *
     * @param maps
     * @return 之前已经存在返回false,不存在返回true
     */
    public boolean multiSetIfAbsent(Map<String, String> maps) {
        return stringRedisTemplate.opsForValue().multiSetIfAbsent(maps);
    }

    /**
     * 增加(自增长), 负数则为自减
     *
     * @param key
     * @param
     * @return
     */
    public Long incrBy(String key, long increment) {
        return stringRedisTemplate.opsForValue().increment(key, increment);
    }

    /**
     *
     * @param key
     * @param
     * @return
     */
    public Double incrByFloat(String key, double increment) {
        return stringRedisTemplate.opsForValue().increment(key, increment);
    }

    /**
     * 追加到末尾
     *
     * @param key
     * @param value
     * @return
     */
    public Integer append(String key, String value) {
        return stringRedisTemplate.opsForValue().append(key, value);
    }

    /** -------------------hash相关操作------------------------- */

    /**
     * 获取存储在哈希表中指定字段的值
     *
     * @param key
     * @param field
     * @return
     */
    public Object hGet(String key, String field) {
        return stringRedisTemplate.opsForHash().get(key, field);
    }

    /**
     * 获取所有给定字段的值
     *
     * @param key
     * @return
     */
    public Map<Object, Object> hGetAll(String key) {
        return stringRedisTemplate.opsForHash().entries(key);
    }

    /**
     * 获取所有给定字段的值
     *
     * @param key
     * @param fields
     * @return
     */
    public List<Object> hMultiGet(String key, Collection<Object> fields) {
        return stringRedisTemplate.opsForHash().multiGet(key, fields);
    }

    public void hPut(String key, String hashKey, String value) {
        stringRedisTemplate.opsForHash().put(key, hashKey, value);
    }

    public void hPutAll(String key, Map<String, String> maps) {
        stringRedisTemplate.opsForHash().putAll(key, maps);
    }

    /**
     * 仅当hashKey不存在时才设置
     *
     * @param key
     * @param hashKey
     * @param value
     * @return
     */
    public Boolean hPutIfAbsent(String key, String hashKey, String value) {

        return stringRedisTemplate.opsForHash().putIfAbsent(key, hashKey, value);

    }
    /**
     * 加锁
     *
     * @param name
     * @param expire
     * @return
     */
    public String tryLock(String name, long expire) {
        name = name + "_lock";
        String token = UUID.randomUUID().toString();
        RedisConnectionFactory factory = stringRedisTemplate.getConnectionFactory();
        RedisConnection conn = factory.getConnection();
        try {

            //参考redis命令:在redis中存入数据 数据明 uuid token 为锁的名字
//            因为这个数据的名字都是name+_locak 所以每次调用加锁方法setnx 只有一个成功调用的才能才能成功的保存的一个锁数据,其他的只能无法设置
            //set key value [EX seconds] [PX milliseconds] [NX|XX]
            Boolean result = conn.set(
                    name.getBytes(),
                    token.getBytes(),
                    Expiration.from(expire, TimeUnit.MILLISECONDS),
                    RedisStringCommands.SetOption.SET_IF_ABSENT //NX
            );
            if (result != null && result)
                return token;
        } finally {
            RedisConnectionUtils.releaseConnection(conn, factory,false);
        }
        return null;
    }
    /**
     * 删除一个或多个哈希表字段
     *
     * @param key
     * @param fields
     * @return
     */
    public Long hDelete(String key, Object... fields) {
        return stringRedisTemplate.opsForHash().delete(key, fields);
    }

    /**
     * 查看哈希表 key 中,指定的字段是否存在
     *
     * @param key
     * @param field
     * @return
     */
    public boolean hExists(String key, String field) {
        return stringRedisTemplate.opsForHash().hasKey(key, field);
    }

    /**
     * 为哈希表 key 中的指定字段的整数值加上增量 increment
     *
     * @param key
     * @param field
     * @param increment
     * @return
     */
    public Long hIncrBy(String key, Object field, long increment) {
        return stringRedisTemplate.opsForHash().increment(key, field, increment);
    }

    /**
     * 为哈希表 key 中的指定字段的整数值加上增量 increment
     *
     * @param key
     * @param field
     * @param delta
     * @return
     */
    public Double hIncrByFloat(String key, Object field, double delta) {
        return stringRedisTemplate.opsForHash().increment(key, field, delta);
    }

    /**
     * 获取所有哈希表中的字段
     *
     * @param key
     * @return
     */
    public Set<Object> hKeys(String key) {
        return stringRedisTemplate.opsForHash().keys(key);
    }

    /**
     * 获取哈希表中字段的数量
     *
     * @param key
     * @return
     */
    public Long hSize(String key) {
        return stringRedisTemplate.opsForHash().size(key);
    }

    /**
     * 获取哈希表中所有值
     *
     * @param key
     * @return
     */
    public List<Object> hValues(String key) {
        return stringRedisTemplate.opsForHash().values(key);
    }

    /**
     * 迭代哈希表中的键值对
     *
     * @param key
     * @param options
     * @return
     */
    public Cursor<Map.Entry<Object, Object>> hScan(String key, ScanOptions options) {
        return stringRedisTemplate.opsForHash().scan(key, options);
    }

    /** ------------------------list相关操作---------------------------- */

    /**
     * 通过索引获取列表中的元素
     *
     * @param key
     * @param index
     * @return
     */
    public String lIndex(String key, long index) {
        return stringRedisTemplate.opsForList().index(key, index);
    }

    /**
     * 获取列表指定范围内的元素
     *
     * @param key
     * @param start
     *            开始位置, 0是开始位置
     * @param end
     *            结束位置, -1返回所有
     * @return
     */
    public List<String> lRange(String key, long start, long end) {
        return stringRedisTemplate.opsForList().range(key, start, end);
    }

    /**
     * 存储在list头部
     *
     * @param key
     * @param value
     * @return
     */
    public Long lLeftPush(String key, String value) {
        return stringRedisTemplate.opsForList().leftPush(key, value);
    }

    /**
     *
     * @param key
     * @param value
     * @return
     */
    public Long lLeftPushAll(String key, String... value) {
        return stringRedisTemplate.opsForList().leftPushAll(key, value);
    }

    /**
     *
     * @param key
     * @param value
     * @return
     */
    public Long lLeftPushAll(String key, Collection<String> value) {
        return stringRedisTemplate.opsForList().leftPushAll(key, value);
    }

    /**
     * 当list存在的时候才加入
     *
     * @param key
     * @param value
     * @return
     */
    public Long lLeftPushIfPresent(String key, String value) {
        return stringRedisTemplate.opsForList().leftPushIfPresent(key, value);
    }

    /**
     * 如果pivot存在,再pivot前面添加
     *
     * @param key
     * @param pivot
     * @param value
     * @return
     */
    public Long lLeftPush(String key, String pivot, String value) {
        return stringRedisTemplate.opsForList().leftPush(key, pivot, value);
    }

    /**
     *
     * @param key
     * @param value
     * @return
     */
    public Long lRightPush(String key, String value) {
        return stringRedisTemplate.opsForList().rightPush(key, value);
    }

    /**
     *
     * @param key
     * @param value
     * @return
     */
    public Long lRightPushAll(String key, String... value) {
        return stringRedisTemplate.opsForList().rightPushAll(key, value);
    }

    /**
     *
     * @param key
     * @param value
     * @return
     */
    public Long lRightPushAll(String key, Collection<String> value) {
        return stringRedisTemplate.opsForList().rightPushAll(key, value);
    }

    /**
     * 为已存在的列表添加值
     *
     * @param key
     * @param value
     * @return
     */
    public Long lRightPushIfPresent(String key, String value) {
        return stringRedisTemplate.opsForList().rightPushIfPresent(key, value);
    }

    /**
     * 在pivot元素的右边添加值
     *
     * @param key
     * @param pivot
     * @param value
     * @return
     */
    public Long lRightPush(String key, String pivot, String value) {
        return stringRedisTemplate.opsForList().rightPush(key, pivot, value);
    }

    /**
     * 通过索引设置列表元素的值
     *
     * @param key
     * @param index
     *            位置
     * @param value
     */
    public void lSet(String key, long index, String value) {
        stringRedisTemplate.opsForList().set(key, index, value);
    }

    /**
     * 移出并获取列表的第一个元素
     *
     * @param key
     * @return 删除的元素
     */
    public String lLeftPop(String key) {
        return stringRedisTemplate.opsForList().leftPop(key);
    }

    /**
     * 移出并获取列表的第一个元素, 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止
     *
     * @param key
     * @param timeout
     *            等待时间
     * @param unit
     *            时间单位
     * @return
     */
    public String lBLeftPop(String key, long timeout, TimeUnit unit) {
        return stringRedisTemplate.opsForList().leftPop(key, timeout, unit);
    }

    /**
     * 移除并获取列表最后一个元素
     *
     * @param key
     * @return 删除的元素
     */
    public String lRightPop(String key) {
        return stringRedisTemplate.opsForList().rightPop(key);
    }

    /**
     * 移出并获取列表的最后一个元素, 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止
     *
     * @param key
     * @param timeout
     *            等待时间
     * @param unit
     *            时间单位
     * @return
     */
    public String lBRightPop(String key, long timeout, TimeUnit unit) {
        return stringRedisTemplate.opsForList().rightPop(key, timeout, unit);
    }

    /**
     * 移除列表的最后一个元素,并将该元素添加到另一个列表并返回
     *
     * @param sourceKey
     * @param destinationKey
     * @return
     */
    public String lRightPopAndLeftPush(String sourceKey, String destinationKey) {
        return stringRedisTemplate.opsForList().rightPopAndLeftPush(sourceKey,
                destinationKey);
    }

    /**
     * 从列表中弹出一个值,将弹出的元素插入到另外一个列表中并返回它; 如果列表没有元素会阻塞列表直到等待超时或发现可弹出元素为止
     *
     * @param sourceKey
     * @param destinationKey
     * @param timeout
     * @param unit
     * @return
     */
    public String lBRightPopAndLeftPush(String sourceKey, String destinationKey,
                                        long timeout, TimeUnit unit) {
        return stringRedisTemplate.opsForList().rightPopAndLeftPush(sourceKey,
                destinationKey, timeout, unit);
    }
    
    /**
     * 删除集合中值等于value得元素
     *
     * @param key
     * @param index
     *            index=0, 删除所有值等于value的元素; index>0, 从头部开始删除第一个值等于value的元素;
     *            index<0, 从尾部开始删除第一个值等于value的元素;
     * @param value
     * @return
     */
    public Long lRemove(String key, long index, String value) {
        return stringRedisTemplate.opsForList().remove(key, index, value);
    }

    /**
     * 裁剪list
     *
     * @param key
     * @param start
     * @param end
     */
    public void lTrim(String key, long start, long end) {
        stringRedisTemplate.opsForList().trim(key, start, end);
    }

    /**
     * 获取列表长度
     *
     * @param key
     * @return
     */
    public Long lLen(String key) {
        return stringRedisTemplate.opsForList().size(key);
    }


    /** --------------------set相关操作-------------------------- */

    /**
     * set添加元素
     *
     * @param key
     * @param values
     * @return
     */
    public Long sAdd(String key, String... values) {
        return stringRedisTemplate.opsForSet().add(key, values);
    }

    /**
     * set移除元素
     *
     * @param key
     * @param values
     * @return
     */
    public Long sRemove(String key, Object... values) {
        return stringRedisTemplate.opsForSet().remove(key, values);
    }

    /**
     * 移除并返回集合的一个随机元素
     *
     * @param key
     * @return
     */
    public String sPop(String key) {
        return stringRedisTemplate.opsForSet().pop(key);
    }

    /**
     * 将元素value从一个集合移到另一个集合
     *
     * @param key
     * @param value
     * @param destKey
     * @return
     */
    public Boolean sMove(String key, String value, String destKey) {
        return stringRedisTemplate.opsForSet().move(key, value, destKey);
    }

    /**
     * 获取集合的大小
     *
     * @param key
     * @return
     */
    public Long sSize(String key) {
        return stringRedisTemplate.opsForSet().size(key);
    }

    /**
     * 判断集合是否包含value
     *
     * @param key
     * @param value
     * @return
     */
    public Boolean sIsMember(String key, Object value) {
        return stringRedisTemplate.opsForSet().isMember(key, value);
    }

    /**
     * 获取两个集合的交集
     *
     * @param key
     * @param otherKey
     * @return
     */
    public Set<String> sIntersect(String key, String otherKey) {
        return stringRedisTemplate.opsForSet().intersect(key, otherKey);
    }

    /**
     * 获取key集合与多个集合的交集
     *
     * @param key
     * @param otherKeys
     * @return
     */
    public Set<String> sIntersect(String key, Collection<String> otherKeys) {
        return stringRedisTemplate.opsForSet().intersect(key, otherKeys);
    }

    /**
     * key集合与otherKey集合的交集存储到destKey集合中
     *
     * @param key
     * @param otherKey
     * @param destKey
     * @return
     */
    public Long sIntersectAndStore(String key, String otherKey, String destKey) {
        return stringRedisTemplate.opsForSet().intersectAndStore(key, otherKey,
                destKey);
    }

    /**
     * key集合与多个集合的交集存储到destKey集合中
     *
     * @param key
     * @param otherKeys
     * @param destKey
     * @return
     */
    public Long sIntersectAndStore(String key, Collection<String> otherKeys,
                                   String destKey) {
        return stringRedisTemplate.opsForSet().intersectAndStore(key, otherKeys,
                destKey);
    }

    /**
     * 获取两个集合的并集
     *
     * @param key
     * @param otherKeys
     * @return
     */
    public Set<String> sUnion(String key, String otherKeys) {
        return stringRedisTemplate.opsForSet().union(key, otherKeys);
    }

    /**
     * 获取key集合与多个集合的并集
     *
     * @param key
     * @param otherKeys
     * @return
     */
    public Set<String> sUnion(String key, Collection<String> otherKeys) {
        return stringRedisTemplate.opsForSet().union(key, otherKeys);
    }

    /**
     * key集合与otherKey集合的并集存储到destKey中
     *
     * @param key
     * @param otherKey
     * @param destKey
     * @return
     */
    public Long sUnionAndStore(String key, String otherKey, String destKey) {
        return stringRedisTemplate.opsForSet().unionAndStore(key, otherKey, destKey);
    }

    /**
     * key集合与多个集合的并集存储到destKey中
     *
     * @param key
     * @param otherKeys
     * @param destKey
     * @return
     */
    public Long sUnionAndStore(String key, Collection<String> otherKeys,
                               String destKey) {
        return stringRedisTemplate.opsForSet().unionAndStore(key, otherKeys, destKey);
    }

    /**
     * 获取两个集合的差集
     *
     * @param key
     * @param otherKey
     * @return
     */
    public Set<String> sDifference(String key, String otherKey) {
        return stringRedisTemplate.opsForSet().difference(key, otherKey);
    }

    /**
     * 获取key集合与多个集合的差集
     *
     * @param key
     * @param otherKeys
     * @return
     */
    public Set<String> sDifference(String key, Collection<String> otherKeys) {
        return stringRedisTemplate.opsForSet().difference(key, otherKeys);
    }

    /**
     * key集合与otherKey集合的差集存储到destKey中
     *
     * @param key
     * @param otherKey
     * @param destKey
     * @return
     */
    public Long sDifference(String key, String otherKey, String destKey) {
        return stringRedisTemplate.opsForSet().differenceAndStore(key, otherKey,
                destKey);
    }

    /**
     * key集合与多个集合的差集存储到destKey中
     *
     * @param key
     * @param otherKeys
     * @param destKey
     * @return
     */
    public Long sDifference(String key, Collection<String> otherKeys,
                            String destKey) {
        return stringRedisTemplate.opsForSet().differenceAndStore(key, otherKeys,
                destKey);
    }

    /**
     * 获取集合所有元素
     *
     * @param key
     * @param
     * @param
     * @return
     */
    public Set<String> setMembers(String key) {
        return stringRedisTemplate.opsForSet().members(key);
    }

    /**
     * 随机获取集合中的一个元素
     *
     * @param key
     * @return
     */
    public String sRandomMember(String key) {
        return stringRedisTemplate.opsForSet().randomMember(key);
    }

    /**
     * 随机获取集合中count个元素
     *
     * @param key
     * @param count
     * @return
     */
    public List<String> sRandomMembers(String key, long count) {
        return stringRedisTemplate.opsForSet().randomMembers(key, count);
    }

    /**
     * 随机获取集合中count个元素并且去除重复的
     *
     * @param key
     * @param count
     * @return
     */
    public Set<String> sDistinctRandomMembers(String key, long count) {
        return stringRedisTemplate.opsForSet().distinctRandomMembers(key, count);
    }

    /**
     *
     * @param key
     * @param options
     * @return
     */
    public Cursor<String> sScan(String key, ScanOptions options) {
        return stringRedisTemplate.opsForSet().scan(key, options);
    }

    /**------------------zSet相关操作--------------------------------*/

    /**
     * 添加元素,有序集合是按照元素的score值由小到大排列
     *
     * @param key
     * @param value
     * @param score
     * @return
     */
    public Boolean zAdd(String key, String value, double score) {
        return stringRedisTemplate.opsForZSet().add(key, value, score);
    }

    /**
     *
     * @param key
     * @param values
     * @return
     */
    public Long zAdd(String key, Set<TypedTuple<String>> values) {
        return stringRedisTemplate.opsForZSet().add(key, values);
    }

    /**
     *
     * @param key
     * @param values
     * @return
     */
    public Long zRemove(String key, Object... values) {
        return stringRedisTemplate.opsForZSet().remove(key, values);
    }

    public Long zRemove(String key, Collection<String> values) {
        if(values!=null&&!values.isEmpty()){
            Object[] objs = values.toArray(new Object[values.size()]);
            return stringRedisTemplate.opsForZSet().remove(key, objs);
        }
       return 0L;
    }

    /**
     * 增加元素的score值,并返回增加后的值
     *
     * @param key
     * @param value
     * @param delta
     * @return
     */
    public Double zIncrementScore(String key, String value, double delta) {
        return stringRedisTemplate.opsForZSet().incrementScore(key, value, delta);
    }

    /**
     * 返回元素在集合的排名,有序集合是按照元素的score值由小到大排列
     *
     * @param key
     * @param value
     * @return 0表示第一位
     */
    public Long zRank(String key, Object value) {
        return stringRedisTemplate.opsForZSet().rank(key, value);
    }

    /**
     * 返回元素在集合的排名,按元素的score值由大到小排列
     *
     * @param key
     * @param value
     * @return
     */
    public Long zReverseRank(String key, Object value) {
        return stringRedisTemplate.opsForZSet().reverseRank(key, value);
    }

    /**
     * 获取集合的元素, 从小到大排序
     *
     * @param key
     * @param start
     *            开始位置
     * @param end
     *            结束位置, -1查询所有
     * @return
     */
    public Set<String> zRange(String key, long start, long end) {
        return stringRedisTemplate.opsForZSet().range(key, start, end);
    }
    
    /**
     * 获取zset集合的所有元素, 从小到大排序
     *
     */
    public Set<String> zRangeAll(String key) {
        return zRange(key,0,-1);
    }

    /**
     * 获取集合元素, 并且把score值也获取
     *
     * @param key
     * @param start
     * @param end
     * @return
     */
    public Set<TypedTuple<String>> zRangeWithScores(String key, long start,
                                                    long end) {
        return stringRedisTemplate.opsForZSet().rangeWithScores(key, start, end);
    }

    /**
     * 根据Score值查询集合元素
     *
     * @param key
     * @param min
     *            最小值
     * @param max
     *            最大值
     * @return
     */
    public Set<String> zRangeByScore(String key, double min, double max) {
        return stringRedisTemplate.opsForZSet().rangeByScore(key, min, max);
    }


    /**
     * 根据Score值查询集合元素, 从小到大排序
     *
     * @param key
     * @param min
     *            最小值
     * @param max
     *            最大值
     * @return
     */
    public Set<TypedTuple<String>> zRangeByScoreWithScores(String key,
                                                           double min, double max) {
        return stringRedisTemplate.opsForZSet().rangeByScoreWithScores(key, min, max);
    }

    /**
     *
     * @param key
     * @param min
     * @param max
     * @param start
     * @param end
     * @return
     */
    public Set<TypedTuple<String>> zRangeByScoreWithScores(String key,
                                                           double min, double max, long start, long end) {
        return stringRedisTemplate.opsForZSet().rangeByScoreWithScores(key, min, max,
                start, end);
    }

    /**
     * 获取集合的元素, 从大到小排序
     *
     * @param key
     * @param start
     * @param end
     * @return
     */
    public Set<String> zReverseRange(String key, long start, long end) {
        return stringRedisTemplate.opsForZSet().reverseRange(key, start, end);

    }

    public Set<String> zReverseRangeByScore(String key, long min, long max) {
        return stringRedisTemplate.opsForZSet().reverseRangeByScore(key, min, max);

    }

    /**
     * 获取集合的元素, 从大到小排序, 并返回score值
     *
     * @param key
     * @param start
     * @param end
     * @return
     */
    public Set<TypedTuple<String>> zReverseRangeWithScores(String key,
                                                           long start, long end) {
        return stringRedisTemplate.opsForZSet().reverseRangeWithScores(key, start,
                end);
    }

    /**
     * 根据Score值查询集合元素, 从大到小排序
     *
     * @param key
     * @param min
     * @param max
     * @return
     */
    public Set<String> zReverseRangeByScore(String key, double min,
                                            double max) {
        return stringRedisTemplate.opsForZSet().reverseRangeByScore(key, min, max);
    }

    /**
     * 根据Score值查询集合元素, 从大到小排序
     *
     * @param key
     * @param min
     * @param max
     * @return
     */
    public Set<TypedTuple<String>> zReverseRangeByScoreWithScores(
            String key, double min, double max) {
        return stringRedisTemplate.opsForZSet().reverseRangeByScoreWithScores(key,
                min, max);
    }

    /**
     *
     * @param key
     * @param min
     * @param max
     * @param start
     * @param end
     * @return
     */
    public Set<String> zReverseRangeByScore(String key, double min,
                                            double max, long start, long end) {
        return stringRedisTemplate.opsForZSet().reverseRangeByScore(key, min, max,
                start, end);
    }

    /**
     * 根据score值获取集合元素数量
     *
     * @param key
     * @param min
     * @param max
     * @return
     */
    public Long zCount(String key, double min, double max) {
        return stringRedisTemplate.opsForZSet().count(key, min, max);
    }

    /**
     * 获取集合大小
     *
     * @param key
     * @return
     */
    public Long zSize(String key) {
        return stringRedisTemplate.opsForZSet().size(key);
    }

    /**
     * 获取集合大小
     *
     * @param key
     * @return
     */
    public Long zZCard(String key) {
        return stringRedisTemplate.opsForZSet().zCard(key);
    }

    /**
     * 获取集合中value元素的score值
     *
     * @param key
     * @param value
     * @return
     */
    public Double zScore(String key, Object value) {
        return stringRedisTemplate.opsForZSet().score(key, value);
    }

    /**
     * 移除指定索引位置的成员
     *
     * @param key
     * @param start
     * @param end
     * @return
     */
    public Long zRemoveRange(String key, long start, long end) {
        return stringRedisTemplate.opsForZSet().removeRange(key, start, end);
    }

    /**
     * 根据指定的score值的范围来移除成员
     *
     * @param key
     * @param min
     * @param max
     * @return
     */
    public Long zRemoveRangeByScore(String key, double min, double max) {
        return stringRedisTemplate.opsForZSet().removeRangeByScore(key, min, max);
    }

    /**
     * 获取key和otherKey的并集并存储在destKey中
     *
     * @param key
     * @param otherKey
     * @param destKey
     * @return
     */
    public Long zUnionAndStore(String key, String otherKey, String destKey) {
        return stringRedisTemplate.opsForZSet().unionAndStore(key, otherKey, destKey);
    }

    /**
     *
     * @param key
     * @param otherKeys
     * @param destKey
     * @return
     */
    public Long zUnionAndStore(String key, Collection<String> otherKeys,
                               String destKey) {
        return stringRedisTemplate.opsForZSet()
                .unionAndStore(key, otherKeys, destKey);
    }

    /**
     * 交集
     *
     * @param key
     * @param otherKey
     * @param destKey
     * @return
     */
    public Long zIntersectAndStore(String key, String otherKey,
                                   String destKey) {
        return stringRedisTemplate.opsForZSet().intersectAndStore(key, otherKey,
                destKey);
    }

    /**
     * 交集
     *
     * @param key
     * @param otherKeys
     * @param destKey
     * @return
     */
    public Long zIntersectAndStore(String key, Collection<String> otherKeys,
                                   String destKey) {
        return stringRedisTemplate.opsForZSet().intersectAndStore(key, otherKeys,
                destKey);
    }

    /**
     *
     * @param key
     * @param options
     * @return
     */
    public Cursor<TypedTuple<String>> zScan(String key, ScanOptions options) {
        return stringRedisTemplate.opsForZSet().scan(key, options);
    }

    /**
     * 扫描主键,建议使用
     * @param patten
     * @return
     */
    public Set<String> scan(String patten){
        Set<String> keys = stringRedisTemplate.execute((RedisCallback<Set<String>>) connection -> {
            Set<String> result = new HashSet<>();
            try (Cursor<byte[]> cursor = connection.scan(new ScanOptions.ScanOptionsBuilder()
                    .match(patten).count(10000).build())) {
                while (cursor.hasNext()) {
                    result.add(new String(cursor.next()));
                }
            } catch (IOException e) {
                e.printStackTrace();
            }
            return result;
        });
        return  keys;
    }
    
    /**
     * 管道技术,提高性能
     * @param type
     * @param values
     * @return
     */
    public List<Object> lRightPushPipeline(String type,Collection<String> values){
        List<Object> results = stringRedisTemplate.executePipelined(new RedisCallback<Object>() {
                    public Object doInRedis(RedisConnection connection) throws DataAccessException {
                        StringRedisConnection stringRedisConn = (StringRedisConnection)connection;
                        //集合转换数组
                        String[] strings = values.toArray(new String[values.size()]);
                        //直接批量发送
                        stringRedisConn.rPush(type, strings);
                        return null;
                    }
                });
        return results;
    }

    public List<Object> refreshWithPipeline(String future_key,String topic_key,Collection<String> values){

        List<Object> objects = stringRedisTemplate.executePipelined(new RedisCallback<Object>() {
            @Nullable
            @Override
            public Object doInRedis(RedisConnection redisConnection) throws DataAccessException {
                StringRedisConnection stringRedisConnection = (StringRedisConnection)redisConnection;
                String[] strings = values.toArray(new String[values.size()]);
                stringRedisConnection.rPush(topic_key,strings);
                stringRedisConnection.zRem(future_key,strings);
                return null;
            }
        });
        return objects;
    }

}

实现业务

这里的场景是微服务,任务模块也是,所以所有缓存的操作在这个模块做,在使用feign 对外抛出接口,并且数据库也是单独存在
配置文件

server:
  port: 10001
spring:
  application:
    name: schedule


  cloud:
    nacos:
      discovery:
        server-addr: 192.168.249.132:8848
        username: nacos
        password: nacos
      config:
        server-addr: 192.168.249.132:8848
        file-extension: yaml
  main:
    allow-bean-definition-overriding: true
### 上面是bootstrap.yaml的内容,主要配置nacos和服务名
##nacos中的配置信
spring:
# redis
  redis:
    host: 192.168.249.132
    password: 222222
    port: 6379
  datasource:
    driver-class-name: com.mysql.jdbc.Driver
    url: jdbc:mysql://localhost:3306/leadnews_schedule?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC&useSSL=false
    username: root
    password: 111111
# 设置Mapper接口所对应的XML文件位置,如果你在Mapper接口中有自定义方法,需要进行该配置
mybatis-plus:
  mapper-locations: classpath*:mapper/*.xml
  # 设置别名包扫描路径,通过该属性可以给包中的类注册别名
  type-aliases-package: com.heima.leadnews.schedule.pojos

实现MybatisPlus快速完成低代码框架redis实现消息延迟队列_第6张图片
因为日志log类设计到多个操作都会写入log,所以之前的log表有乐观锁的版本字段,启动类中添加Mp集合的乐观锁逻辑

@EnableScheduling
@SpringBootApplication
@MapperScan("com.heima.schedule.mapper")
public class ScheduleApplication {

    public static void main(String[] args) {
        SpringApplication.run(ScheduleApplication.class,args);
    }
    /**
     * mybatis-plus乐观锁支持
     * @return
     */
    @Bean
    public MybatisPlusInterceptor optimisticLockerInterceptor(){
        MybatisPlusInterceptor interceptor = new MybatisPlusInterceptor();
        interceptor.addInnerInterceptor(new OptimisticLockerInnerInterceptor());
        return interceptor;
    }

}

指定乐观锁版本字段
redis实现消息延迟队列_第7张图片
在taskservice中实现业务,既然是实现延迟队列,那么一定有添加,取消,消费的基本操作

public interface TaskService extends IService<Taskinfo> {
//    返回当任务id
    public Long addTask(Task task);
    //todo 无法从redis删除数据
    public boolean cancelTask(long taskid);
    public Task poll(int type,int priority);

}

实现


@Slf4j
@Service
public class TaskServiceImpl  extends ServiceImpl<TaskinfoMapper, Taskinfo> implements TaskService {

    @Autowired
    TaskinfoLogsMapper taskinfoLogsMapper;
@Autowired
    CacheService cacheService;
    /**
     * 添加任务到数据库中 并且日志也需要传报
      * @param task
     * @return
     */
    @Transactional
    @Override
    public Long addTask(Task task) {
        //1.添加任务到数据库中
//          传递过来的是一个dto
        long tinfoId= saveSql(task);
        if (tinfoId!=0) {
            task.setTaskId(tinfoId);
            saveCache(task);
            return tinfoId;
        }
        else{
            throw new RuntimeException("保存任务到数据库失败");
        }
        //避免redis和sql不一致

    }

    /**
     * 删除任务并且保证日志的更新
     * @param taskid  保存的时候日志id任务id设置的同一个值 所以取数据的时候也可以这样
     * @return
     */
    /**
     * 取消任务
     * @param taskId
     * @return
     */
    @Override
    public boolean cancelTask(long taskId) {

        boolean flag = false;

        //删除任务,更新日志
        Task task = updateDb(taskId,ScheduleConstants.EXECUTED);

        //删除redis的数据
        if(task != null){
            removeTaskFromCache(task);
            flag = true;
        }



        return false;
    }

    /**
     * 消费任务
     * @param type
     * @param priority
     * @return
     */

    @Override
    public Task poll(int type,int priority) {
        Task task = null;
        try {
            String key = type+"-"+priority;
            String task_json = cacheService.lRightPop(ScheduleConstants.TOPIC + key);
            if(StringUtils.isNotBlank(task_json)){
                task = JSON.parseObject(task_json, Task.class);
                if (task.getTaskId()!=null){
                    //更新数据库信息
                    System.out.println(task.getTaskId());
                    updateDb(task.getTaskId(),ScheduleConstants.EXECUTED);
                }else {
                    System.out.println("没有id信息");
                }

            }
        }catch (Exception e){
            e.printStackTrace();
            log.error("poll task exception");
        }

        return task;
    }

    /**
     * 删除redis中的任务数据
     * @param task
     */
    private void removeTaskFromCache(Task task) {

        String key = task.getTaskType()+"-"+task.getPriority();
        String s = JSON.toJSONString(task.getTaskType()+"-"+task.getPriority()+task);
//这里不做区分因为之前的数据一定是小于现在时间得
            cacheService.lRemove(ScheduleConstants.TOPIC+key,0,s);
            cacheService.zRemove(ScheduleConstants.FUTURE+key, s);

    }

    /**
     * 删除任务,更新任务日志状态
     * @param taskId
     * @param status
     * @return
     */
    private Task updateDb(long taskId, int status) {
        Task task = null;
        try {
            //删除任务
         removeById(taskId);

            TaskinfoLogs taskinfoLogs = taskinfoLogsMapper.selectById(taskId);
            taskinfoLogs.setStatus(status);
            taskinfoLogsMapper.updateById(taskinfoLogs);

            task = new Task();
            BeanUtils.copyProperties(taskinfoLogs,task);
            task.setExecuteTime(taskinfoLogs.getExecuteTime().getTime());
        }catch (Exception e){
            log.error("task cancel exception taskid"+taskId);
        }

        return task;

    }

    /**
     * redis 操作必须要和数据库操作区分开保持数据一致
     * 只把将要5分钟后执行的时间加入队列,如果从设置定时时间开始加,
     * 那么redis中将会保存很多还有一俩天才执行的任务,并且没每分钟做数据刷新的时候资源消耗变大
     * @param task
     * @return
     */
    public void saveCache(Task task){
        //        获取5分钟后的时间
        Calendar calendar = Calendar.getInstance();
        calendar.add(Calendar.MINUTE,5);
        long furtime = calendar.getTime().getTime();
        //添加任务到redis
        if (task.getExecuteTime()<=System.currentTimeMillis())
        {
            //   2.1 如果任务时间小于等于当前时间存入list 立即执行
            String key=ScheduleConstants.TOPIC+ task.getTaskType()+"-"+task.getPriority();
            cacheService.lLeftPush(key, JSON.toJSONString(task));
        }
        //2.2 如果任务的执行时间大于当前时间 && 小于等于预设时间(未来5分钟) 存入zset中
        else if(task.getExecuteTime()>System.currentTimeMillis()&&task.getExecuteTime()<=furtime){
            String key=ScheduleConstants.FUTURE+ task.getTaskType()+"-"+task.getPriority();
            cacheService.zAdd( key, JSON.toJSONString(task), task.getExecuteTime());
        }

    }


    public long saveSql(Task task){
        //1.添加任务到数据库中
//          传递过来的是一个dto
        Taskinfo taskinfo = taskTransinfo(task);
        long takeId=0;
        try{

            save(taskinfo);
            //1.1 对日志进行保存
            takeId=taskinfo.getTaskId();
            TaskinfoLogs logs = InitaskLogs(taskinfo);
            taskinfoLogsMapper.insert(logs);
            return takeId;
        }catch (Exception e){

            throw new IllegalStateException("保存任务到数据库失败");

        }
    }



    //dto 和pojo 之间有些属性不能bean转换
    public Taskinfo taskTransinfo(Task task) {
        Taskinfo taskinfo = new Taskinfo();
        BeanUtils.copyProperties(task, taskinfo);
        //info对象中的执行时间是date 这里和long 进行转换
        taskinfo.setExecuteTime(new Date(task.getExecuteTime()));
        return taskinfo;
    }

    /**
     * 日志进行初始化
     * @param taskinfo
     * @return
     */
    public  TaskinfoLogs InitaskLogs(Taskinfo taskinfo) {
        TaskinfoLogs taskinfoLogs = new TaskinfoLogs();
        BeanUtils.copyProperties(taskinfo, taskinfoLogs);
//        初始化乐观锁的版本号
        taskinfoLogs.setVersion(1);
        taskinfoLogs.setStatus(ScheduleConstants.SCHEDULED);
        return taskinfoLogs;
    }






    /**
     * 数据同步刷新
     * 每隔一分钟坚持数据是否快到执行时间
     */
    /**
     * 未来数据定时刷新
     */
    @Scheduled(cron = "0 */1 * * * ?")
    public void refresh(){

        String token = cacheService.tryLock("FUTURE_TASK_SYNC", 1000 * 30);
        if(StringUtils.isNotBlank(token)){
            log.info("未来数据定时刷新---定时任务");

            //获取所有未来数据的集合key
            Set<String> futureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");
            for (String futureKey : futureKeys) {//future_100_50

                //获取当前数据的key  topic
                String topicKey = ScheduleConstants.TOPIC+futureKey.split(ScheduleConstants.FUTURE)[1];

                //按照key和分值查询符合条件的数据
                Set<String> tasks = cacheService.zRangeByScore(futureKey, 0, System.currentTimeMillis());

                //同步数据
                if(!tasks.isEmpty()){
                    cacheService.refreshWithPipeline(futureKey,topicKey,tasks);
                    log.info("成功的将"+futureKey+"刷新到了"+topicKey);
                }
            }
        }
    }

    /**
     * 将数据库中到到期的未来任务同步一遍
     */
    @Scheduled(cron = "0 */5 * * * ?")
    @PostConstruct//和启动类初始化同时执行
    public void refreshData() {
    clearCache();
    Calendar calendar=Calendar.getInstance();
    calendar.add(Calendar.MINUTE,5);
        List<Taskinfo> taskinfoList = lambdaQuery().lt(Taskinfo::getExecuteTime, calendar.getTimeInMillis()).list();
//        数据的任务添加到redis
        if(taskinfoList.size()>0&& taskinfoList!=null){
            taskinfoList.forEach(i->{
                Task task = new Task();
                BeanUtils.copyProperties(i,task);
                task.setExecuteTime(i.getExecuteTime().getTime());
                //保存到保证数据库和redis的一个同步
                addTask(task);
            });

        }
        log.info("数据库和redis 进行同步");
    }
    public void clearCache(){
        //        清楚缓存中的数据
        Set<String> topicKeys = cacheService.scan(ScheduleConstants.TOPIC + "*");
        Set<String> furtureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");
        cacheService.delete(topicKeys);
        cacheService.delete(furtureKeys);
    }



}

逻辑 任务添加时候插入数据库,以及任务日志然后根据执行时间和系统设置预处理缓冲时间(这里指的是5分钟),取消任务时,删除任务数据,修改日志状态,其中redis删除数据,并且有定时刷新set队列,将时间满足的移动到list立即执行队列
对外抛出

@RequestMapping("/api/task")
@RestController
public class ScheduleClient implements IScheduleClient {
    @Autowired
    TaskService taskService;
    @RequestMapping("/add")
    @Override
    public ResponseResult addTask(@RequestBody  Task task) {
        return ResponseResult.okResult(taskService.addTask(task));

    }
    @GetMapping("/{taskId}")
    @Override
    public ResponseResult cancelTask(@PathVariable("taskId") long taskid) {
        return ResponseResult.okResult(taskService.cancelTask(taskid));
    }
    @GetMapping("/{type}/{priority}")
    @Override
    public ResponseResult poll( @PathVariable("type") int type,@PathVariable("priority") int priority) {

        return ResponseResult.okResult(taskService.poll(type, priority));
    }
}

feign模块添加对应调用者

@FeignClient(value = "schedule")
public interface IScheduleClient {
    /**
     *
     * @param task
     * @return 任务id
     */
    @PostMapping("/api/v1/task/add")
    public ResponseResult addTask(@RequestBody Task task);

    /**
     *
     * @param taskid
     * @return 是否成功
     */
    @GetMapping("/api/v1/task/{taskId}")
    public ResponseResult cancelTask(@PathVariable("taskId") long taskid);
    @GetMapping("/api/v1/task/{type}/{priority}")
    public ResponseResult poll( @PathVariable("type") int type,@PathVariable("priority") int priority);
}

发布文章的服务在完成文章的处理逻辑后,调用该模块的添加任务方法,根据执行时间放在哪一个队列,set/list,其中值得主义的是,数据表之间的参数字段是长比特类型,Mp映射也是,所以在其他模块需要调用该缓存模块方法时候,对传递的任务擦拭布参数进行字节序列化化redis实现消息延迟队列_第8张图片调用者模块

 @Override
    @Async
    public void addNewsToTask(Integer Newsid, Date published) {
      log.info("addNewsToTask Newsid:"+Newsid+" published:"+published);
      if (published == null||Newsid==null){
          throw new IllegalArgumentException("传递参数不全");
      }
        Task task = new Task();
        task.setExecuteTime(published.getTime());
        task.setTaskType(TaskTypeEnum.NEWS_SCAN_TIME.getTaskType());
        task.setPriority(TaskTypeEnum.NEWS_SCAN_TIME.getPriority());
        WmNews news = new WmNews();
        news.setId(Newsid);
        task.setParameters(ProtostuffUtil.serialize(news));
        schduleClient.addTask(task);
        log.info("addNewsToTask success");
    }

在调用feign api之前需要把对应的参数准备,其中包括序列化,而这里的序列化为bite采用的是第三方库
序列化工具对比

  • JdkSerialize:java内置的序列化能将实现了Serilazable接口的对象进行序列化和反序列化, ObjectOutputStream的writeObject()方法可序列化对象生成字节数组
  • Protostuff:google开源的protostuff采用更为紧凑的二进制数组,表现更加优异,然后使用protostuff的编译工具生成pojo类
    所以这里采用protostuff 库
<dependency>
    <groupId>io.protostuff</groupId>
    <artifactId>protostuff-core</artifactId>

</dependency>

<dependency>
    <groupId>io.protostuff</groupId>
    <artifactId>protostuff-runtime</artifactId>

</dependency>

你可能感兴趣的:(redis,数据库,缓存)