前端性能优化之防抖&节流

前端性能优化之防抖&节流

  • 1.什么是防抖和节流
  • 2.代码实现
    • 2.1 实现防抖
    • 2.2 实现节流
  • 3.应用场景
    • 3.1 防抖的应用
    • 3.2 节流的应用

1.什么是防抖和节流

防抖和节流是前端开发中常用的两种性能优化技术。

为什么需要防抖和节流呢?

两者目的都是为了防止某个时间段内操作频繁触发,造成性能消耗。

防抖:在事件被触发 n 秒后再执行回调,如果在这 n 秒内事件又被触发,则重新计时。

节流: n 秒内只执行一次事件,即使n 秒内事件重复触发,也只有一次生效。

可能很多人看了概念还是不太清楚这两者到底有什么区别,下面就通过一个简单的案例来说明。

let btn = document.getElementById('btn')
//模拟发送请求
function req(){
  console.log('发送请求')
}
btn.addEventListener('click', req)

以上代码简单实现了一个点击按钮的事件,每点击一次按钮就调用一次函数发送请求,效果如下:


如果对函数做了防抖

btn.addEventListener('click', debounce(req, 1000)) //防抖,时间设为1秒

1秒内疯狂点击按钮,事件都不会被触发,只有当不再点击按钮后,过了1秒,事件才被触发。效果是下面这样的:

如果对函数做了节流

btn.addEventListener('click',throttle(req, 1000)) //节流,时间设为1秒

1秒内疯狂点击按钮,事件都只被触发一次。效果是下面这样的:

由此可以看出,两者的区别:防抖是一段时间内只执行最后一次,节流是一段时间内只执行一次。如下图所示:

前端性能优化之防抖&节流_第1张图片

2.代码实现

下面就来分别实现一下防抖和节流。

2.1 实现防抖

防抖的实现思路:使用闭包来保存定时器变量 timer。事件触发后开启一个定时器,如果在 delay 时间内再次触发事件,就会清除之前的

定时器并设置一个新的定时器,直到 delay 时间内不再触发事件,定时器到达时间后执行传入的函数 fn。

function debounce(fn, delay = 500) {
    let timer = null;
    // 这里返回的函数是每次用户实际调用的防抖函数
    return function(...args) {	
    	// 如果已经设定过定时器了就清空上一次的定时器
    	if(timer) {
        	clearTimeout(timer);	
        }
        // 开始一个新的定时器,延迟执行用户传入的方法,这里必须是箭头函数,要让this指向fn的调用者
        timer = setTimeout(() => {  
        	fn.apply(this, args);   
        }, delay)	
    }
}

2.2 实现节流

节流的实现思路:同样使用闭包来保存定时器变量 timer。每次触发事件时,如果定时器不存在,就设置一个定时器,并在 delay 时间后

执行传入的函数 fn。如果在 delay 时间内再次触发事件,由于定时器还存在,就不会执行传入的函数 func。

function throttle(fn, delay = 500) {
    let timer = null;
    return function(...args) {
    	// 当前有任务了,直接返回
        if(timer) {
        	return;
        }
        timer = setTimeout(() => {
            fn.apply(this, args);
            //执行完后,需重置定时器,不然timer一直有值,无法开启下一个定时器
            timer = null;	
        }, delay)
    }
}

节流还有一种更简单的时间戳版本,思路就是两次触发的时间间隔到了指定时间就执行,否则不执行。

function throttle(fn, delay = 500) {
  let prev = Date.now();// 上一次时间
  return function(...args) {
    let now = Date.now();//当前时间
    // 时间间隔到了就执行函数
    if (now - prev >= delay) {
      fn.apply(this, args);
      prev = Date.now();
    }
  };
}

3.应用场景

3.1 防抖的应用

防抖的主要应用场景是优化搜索框的输入,用户在不断输入值时,用防抖来节约请求资源,当用户最后一次输入完,再发送请求。

案例:搜索查询

<body>
<input type="text" id="search" />
<script>
  const search = document.getElementById("search");
  //模拟发送请求
  function req() {
    console.log('发送请求查询结果...');
  }
  search.addEventListener('keyup', req);
script>
body>

运行效果如下:


如上所示,在表单中输入内容,键盘弹起时就会触发keyup事件,发送请求去查询内容,这样频繁的触发事件发送请求会增加性能消耗,

同时也会增加服务器的压力,并且实际应用中,只需用户最后一次输入完,再发送请求,于是我们可以使用防抖进行优化。

<body>
<input type="text" id="search" />
<script>
  const search = document.getElementById("search");
  //模拟发送请求
  function req() {
    console.log('发送请求查询结果...');
  }
  function debounce(fn, delay = 500) {
    let timer = null;
    return function(...args) {	
    	if(timer) {
        	clearTimeout(timer);	
        }
        timer = setTimeout(() => {  
        	fn.apply(this, args);   
        }, delay)	
    }
  }
  search.addEventListener('keyup', debounce(req, 1000));
script>
body>

防抖后的效果:


可以看到,利用防抖,当用户频繁输入时,并不会发送请求,只有在指定间隔内没有输入时,才触发查询,这样就提高了浏览器性能。

3.2 节流的应用

节流的主要应用场景是优化滚动事件,当用户滚动页面时,会频繁触发滚动事件,使用节流可以控制滚动事件的触发频率,避免过多的计算和渲染操作,提高页面的性能和流畅度。

案例:监听计算滚动条位置

//模拟计算滚动位置
function compute() {
  console.log('计算滚动条位置');
}
window.addEventListener('scroll', compute)

运行效果如下:

如上所示,有些场景下需要去计算判断滚动条的位置,比如是否加载更多,当我们滚动浏览器的滚动条时,会频繁触发scroll事件,造成频繁的判断滚动条位置,可以利用节流进行优化。

//模拟计算滚动位置
function compute() {
  console.log('计算滚动条位置');
}
function throttle(fn, delay = 500) {
  let prev = Date.now();
  return function(...args) {
    let now = Date.now();
    if (now - prev >= delay) {
      fn.apply(this, args);
      prev = Date.now();
    }
  };
}
window.addEventListener('scroll', throttle(compute, 200))

节流后的效果:


可以看到,利用节流,可以按一定时间的频率来计算判断滚动条位置,然后决定是否加载更多,这样就能减少浏览器性能的消耗。

以上就是本文的分享了,如有错误,欢迎指正!

你可能感兴趣的:(javascript,javascript,性能优化)