- **LLM Gateway:您的智能对话门户**
芮奕滢Kirby
LLMGateway:您的智能对话门户llm-gatewayGatewayforsecure&reliablecommunicationswithOpenAIandotherLLMproviders项目地址:https://gitcode.com/gh_mirrors/ll/llm-gateway在人工智能和自然语言处理的浪潮中,LLMGateway以其卓越的设计与功能脱颖而出,为开发者和用户提供
- 2025(第十五届)中国互联网产业年会/AI重新定义互联网
东锋1.3
互联网人工智能
近日,2025(第十五届)中国互联网产业年会在北京举办,中国工程院院士、中国工程院原副院长邬贺铨在会上作了题为《以AI重新定义互联网》的主旨报告。邬贺铨院士表示,互联网在过去几十年经历了巨大变革。展望未来,互联网将继续在数字化、智能化方向上深入发展,推动更广泛的社会变革。未来十年,我们将进入“数智(新质)互联网”阶段,其核心特征是基础协议采用IPv6+,人机接口将以自然语言为主,不再依赖于点击AP
- OpenAI的编程语言和框架,给程序员带来了帮助有哪些
API技术大佬Anzexi58
OpenAI人工智能人工智能深度学习
OpenAI是一个人工智能开发公司,成立于2015年,总部位于美国旧金山。这家公司致力于研究和开发先进的人工智能技术,旨在将这些技术应用到解决全球一些最棘手的问题上。OpenAI以其卓越的技术和实验室出品的groundbreakingAIpapers而闻名。OpenAI的研究涉及深度学习、自然语言处理、视觉感知、强化学习等多个领域,并已在各种应用中取得了令人瞩目的成果。例如,在机器人领域,Open
- 探索OpenAI Python SDK: 智能编程新里程
周澄诗Flourishing
探索OpenAIPythonSDK:智能编程新里程openai-pythonTheofficialPythonlibraryfortheOpenAIAPI项目地址:https://gitcode.com/gh_mirrors/op/openai-python如果你对人工智能和自然语言处理有浓厚的兴趣,那么这个项目将为你开启新的探索之门——。这是一个由OpenAI开发的Python库,用于与他们的A
- 全排列
SSL_Yyx
回溯
题目描述:输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字。输入输出格式输入格式:n(1≤n≤9)输出格式:由1~n组成的所有不重复的数字序列,每行一个序列。输入输出样例输入样例#1:3输出样例#1:123132213231312321程序如下:vara:array[1..9]ofinteger;b:array[1..9]ofboolean;m:int
- 数学与机器学习:共舞于智能时代的双璧
每天五分钟玩转人工智能
机器学习人工智能
随着人工智能的崛起,机器学习作为其核心技术之一,正引领着新一轮的科技革命。而在这场革命中,数学以其深邃的理论和精妙的工具,为机器学习提供了坚实的支撑。数学与机器学习之间的关系,如同琴瑟和鸣,共同编织出智能时代的华美乐章。数学,作为自然科学的皇后,以其严谨的逻辑和精确的推理,为机器学习提供了坚实的理论基础。机器学习算法的设计、优化和应用,都离不开数学的支持。无论是线性代数、概率统计,还是微积分、最优
- 大模型应用:探索AI大模型的50个应用场景:让科技改变生活。
AGI大模型资料分享员
人工智能科技生活agi语言模型自然语言处理
随着人工智能技术的迅猛发展,AI大模型在各个领域的应用日益广泛。百度创始人、董事长兼首席执行官李彦宏在2024年世界人工智能大会上表示,目前AI技术发展路线发生了方向性改变,已从过去辨别式人工智能转向了未来生成式人工智能。他更是呼吁:“大家不要卷模型,要卷应用!”本文将为大家盘点AI大模型的50个应用场景,并按应用频率从高到低进行排列,带您了解AI如何深刻改变我们的工作与生活。1.自然语言处理(N
- 我们为什么要用大语言模型来迭代数据安全能力?
大模型.
语言模型人工智能自然语言处理架构深度学习大数据大模型
在当今科技飞速发展的时代,大语言模型无疑是最炙手可热的话题之一。从OpenAI的GPT系列到谷歌的BERT,这些拥有海量参数的模型宛如智能巨人,正重塑着自然语言处理(NLP)的格局。你或许好奇,大语言模型究竟为何如此备受瞩目?这得从自然语言处理领域的核心任务——文本分类说起。文本分类,就像是给五花八门的文本信息贴上合适的“标签”,无论是判断一封邮件是正常邮件还是垃圾邮件,分析社交媒体上的评论是积极
- 盘点50个AI大模型企业和典型产品
大模型玩家
人工智能语言模型ai自然语言处理深度学习大模型
OpenAI:-ChatGPT:是OpenAI推出的非常具有影响力的聊天机器人程序,能够进行自然流畅的对话、文本创作、问题解答等,不断迭代升级,引发了全球对大模型的广泛关注。-GPT-4O:OpenAI的新一代AI模型,在语言理解和生成能力上有进一步提升,能够感知用户的情绪,并针对问题以带有情绪的“嗓音”做出反馈。-Sora:文生视频大模型,可根据文本指令生成复杂且具有一定时长的视频,具有多个镜头
- 检索增强(Retrieval Augmentation)是一种结合信息检索技术和生成模型的技术
大霸王龙
系统分析业务人工智能
检索增强(RetrievalAugmentation)是一种结合信息检索技术和生成模型的技术,旨在通过从外部知识库或文档中检索相关信息来增强生成模型的能力。这种方法广泛应用于自然语言处理(NLP)任务中,如问答系统、对话生成和文本生成等。1.检索增强的核心思想检索增强的核心思想是将生成模型与信息检索系统结合,利用外部知识库或文档中的信息来辅助生成更准确、更丰富的回答或内容。具体来说,检索增强包括以
- 一款自适应的 AI 集成开发环境 (IDE)—Trae
蚂蚁在飞-
人工智能
Trae是一款自适应的AI集成开发环境(IDE),通过与您协作工作,帮助您更高效地运行并加速开发进程。Builder模式聊天式项目构建,让开发更快速在构建者模式下,Trae会自动分解并执行任务,优化每个步骤,同时让您能够预览和掌控整个过程。Chat模式在编码过程中,可以随时与AI助手对话,获取关于编程的帮助。无论是解释代码、添加注释、修复错误等,AI助手都能快速响应。•代码片段生成您只需用自然语言
- 大语言模型LLM在地理信息GIS中应用场景
GISer_Jinger
人工智能GIS模型与应用语言模型人工智能自然语言处理arcgis
AI&地理AI大语言模型在地理中的应用主要体现在以下几个方面:一、地理信息检索与查询AI大语言模型能够理解复杂的自然语言查询,包括地名、地理位置、地理特征等,从而提供更加精准的地理信息检索服务。例如,用户可以通过自然语言输入查询某个地点的详细信息,模型能够返回包括地理位置、周边设施、交通状况等在内的全面信息。AI与地理信息检索与查询的结合为地理信息的获取和利用带来了革命性的变化。以下是对AI在地理
- AI软件外包需要注意什么 外包开发AI软件的关键因素是什么 如何选择AI外包开发语言
北京动点飞扬软件
AI外包
1.定义目标与需求首先,要明确你希望AI智能体做什么。是自动化任务、数据分析、自然语言处理,还是其他功能?明确目标可以帮助你选择合适的技术和方法。2.选择开发平台与工具开发AI智能体的软件时,你需要选择适合的编程语言、框架和工具。例如:编程语言:Python是最常用的语言,因为它有强大的AI/ML库,如TensorFlow、PyTorch、scikit-learn等。开发平台:你可以使用本地环境、
- PAT乙组1001题解
YumenQen
PAT练习题C语言手练
问题描述:对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。输出格式:输出从n计算到1需要的步数。#includeintcount=0;intn;intmain
- 从简单到深刻的认知发展
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
认知发展,人工智能,深度学习,神经网络,机器学习,自然语言处理,计算机视觉1.背景介绍认知发展是人类从简单到复杂的思维方式演进的过程,它涉及感知、记忆、语言、推理和决策等多个方面。随着人工智能技术的飞速发展,我们开始尝试用计算机模拟人类的认知能力,构建能够学习、理解和解决复杂问题的智能系统。从早期的符号逻辑到如今的深度学习,人工智能的发展经历了多个阶段。早期的人工智能研究主要集中在规则和逻辑推理上
- SpringBoot Web开发中的Thymeleaf模版引擎
利瑞华
springboot前端后端
在SpringBoot的Web开发中,模板引擎是处理视图层的重要组件之一。在众多模板引擎中,Thymeleaf以其优雅的自然模板设计和对HTML的良好支持,成为了SpringBoot官方推荐的模板引擎。本文将详细介绍如何在SpringBoot项目中使用Thymeleaf模板引擎进行Web开发。Thymeleaf简介Thymeleaf是一个用于Web和独立环境的现代服务器端Java模板引擎。它类似于
- 2025年1月27日人工智能与科技新闻:DeepSeek震撼全球科技市场
海棠AI实验室
AI瞭望塔人工智能科技
中国AI初创公司DeepSeek震撼全球科技市场DeepSeekR1模型的突破性发展在科技迅猛发展的时代,中国人工智能初创公司DeepSeek推出的R1模型,以其卓越的技术能力,在全球AI领域掀起一场变革。这不仅是技术层面的突破,更对全球科技市场产生深远影响。技术创新与突破全新语言处理架构:提升AI理解和生成能力超越传统模型的认知能力:实现更精准的自然语言推理多模态交互:支持文本、图像、语音等多维
- THULAC-Python 使用教程
时昕海Minerva
THULAC-Python使用教程THULAC-PythonTHULAC-Python:由清华大学开发的中文词法分析工具包,提供中文分词和词性标注功能。项目地址:https://gitcode.com/gh_mirrors/th/THULAC-Python项目介绍THULAC(THULexicalAnalyzerforChinese)是由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词
- 【Python】探索自然语言处理的利器:THULAC 中文词法分析库详解
技术无疆
Python人工智能自然语言处理人工智能python数据挖掘机器学习深度学习神经网络
THULAC(THULexicalAnalyzerforChinese)是清华大学开发的一款中文词法分析工具,集成了分词和词性标注两大功能。THULAC拥有强大的分词能力和高效的词性标注,适用于多种中文文本处理场景。该工具能够在保证高准确率的同时保持较快的处理速度,非常适合大规模中文数据处理。⭕️宇宙起点THULAC的特点安装与配置1.使用pip安装2.使用GitHub源码安装♨️使用方法1.分词
- 探索GigaChat与LangChain的完美结合:深度解析与实战指南
asdfujhgy
langchaineasyui前端python
探索GigaChat与LangChain的完美结合:深度解析与实战指南引言在人工智能的领域中,语言模型和嵌入技术正逐步改变我们与数据交互的方式。GigaChat作为一种创新的AI嵌入服务,结合LangChain可以提供强大的文本嵌入功能,促进自然语言处理任务的完成。本篇文章将带你深入了解如何结合GigaChat与LangChain进行文本嵌入,并提供实用的代码示例与解决方案。主要内容GigaCha
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- # 第一章:认识chatgpt
出门喝奶茶
chatgptchatgpt
chatgpt发展背景详细介绍一、基础理论背景人工智能和自然语言处理的兴起早期理论:20世纪中期,人工智能(AI)初见端倪,目标是模拟人类智能。自然语言处理作为AI的重要分支,致力于让机器理解和生成人类语言。关键里程碑:1980年代的统计方法和2000年代的神经网络技术,使NLP实现了从规则驱动到数据驱动的转变。神经网络与深度学习2010年代,深度学习的兴起极大推动了NLP的发展。基于大规模语料库
- #深度学习:从基础到实践
single_ffish
深度学习gpt神经网络生成对抗网络1024程序员节
深度学习是人工智能领域近年来最为火热的技术之一。它通过构建由多个隐藏层组成的神经网络模型,能够从海量数据中自动学习特征和表征,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。本文将全面介绍深度学习的基础知识、主要算法和实践应用,帮助您快速掌握这一前沿技术。1.深度学习的基础1.1人工神经网络深度学习是基于人工神经网络(ArtificialNeuralNetwork,ANN)的一种机器学习
- 红外热成像拥抱无人机 迸发安防救援新活力
weixin_34244102
人工智能前端ViewUI
经过几十年的发展,红外热成像技术已经广泛应用于军事、医疗、工业生产、消防等领域,更是在近几年开启了民用化的发展趋势。对于安防而言,热成像技术的出现,为视频监控在光线不足时增加了夜视和透视的功能,在整个安防行业的发展历程中起到至关重要的作用。随着技术的不断革新,现如今,热成像技术也正在不断朝着新应用、新领域发展,今天我们来聊聊热成像技术与无人机和智能化的结合所迸发出的火花。自然界中一切物体,只要温度
- 【Python】已解决:error: subprocess-exited-with-error
屿小夏
python开发语言linux
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之6 三端架构的本质/内在/外观:自明性/信念/bank词扇
一水鉴天
软件智能智能制造人工语言人工智能
本文提要一些补充在为前端和后端锁定的两个中心词“概念”(命题“作文”的程序公共逻辑语言)和“描述”(谓词“描述”的自然描述语言)的基础上,暂时将中端的中心词锁定在“环境”(情境“意义”的人工语义网络语言)。三者的共同性--都需要通过“演算”得到(命题演算/谓词演算/情境演算)。每种演算都以本地或局部的this此岸为输入(A-box,最初是一个条件分支符--条件表达式),远处或全局的彼岸that(T
- AI在电商平台商品描述生成中的应用
AI天才研究院
计算AI大模型企业级应用开发实战大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
AI在电商平台商品描述生成中的应用关键词:人工智能、电商平台、商品描述、自然语言处理、机器学习、深度学习摘要:本文深入探讨了人工智能在电商平台商品描述生成中的应用。首先,我们回顾了人工智能的概述和电商平台的发展背景。随后,分析了商品描述在电商平台中的重要性以及存在的问题。接下来,我们重点介绍了AI在商品描述生成中的应用技术,包括自然语言处理、机器学习和深度学习等。文章还通过实战案例展示了AI商品描
- 参考图像分割Referring Image Segmentation(RIS)和开放词汇语义分割Open Vocabulary Semantic Segmentation
余弦的倒数
深度学习CV笔记计算机视觉深度学习
一、参考图像分割基本概念:ReferringImageSegmentation(RIS)是一种图像分割技术,旨在根据自然语言表达来标记图像或视频中表示对象实例的像素。也就是根据自然语言描述来实现图像分割。旨在根据自然语言表达来标记图像或视频中的特定区域。在给定描述区域的自然语言文本的情况下,RIS需要在图像中找到相应的区域。这个任务是众所周知的具有挑战性的视觉和语言任务之一。RIS需要收集目标区域
- 【Python】已解决:(cmd进入Python环境报错)No Python at ‘C:\Users…\Python\Python39\python.exe’
屿小夏
pythonlinux开发语言
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 全局光照:优化与加速技术教程_2024-07-21_16-04-16.Tex
chenjj4003
游戏开发2人工智能计算机视觉性能优化vrffmpeg
全局光照:优化与加速技术教程理解全局光照全局光照的基本概念全局光照(GlobalIllumination,GI)是一种在计算机图形学中模拟真实世界光照效果的技术。它不仅考虑光源直接照射到物体表面的光照(直接光照),还考虑了光线在不同物体表面之间的多次反射(间接光照),从而产生更加自然和真实的光照效果。全局光照能够模拟出环境光遮蔽、全局阴影、色彩溢出等现象,使得渲染的场景更加逼真。全局光照与局部光照
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓