Java8 λ(Lambda)表达式

简介

λ表达式(也称为闭包)是Java 8中最大和最令人期待的语言改变。它允许我们将函数当成参数传递给某个方法,或者把代码本身当作数据处理:函数式开发者非常熟悉这些概念。
很多JVM平台上的语言(Groovy、Scala等)从诞生之日就支持λ表达式,但是Java开发者没有选择,只能使用匿名内部类代替λ表达式。

从形式上看,λ表达式只是为你节省了几行代码。但将λ表达式引入Java的动机并不仅仅为此。Java8有一个短期目标和一个长期目标。短期目标是:配合“集合类批处理操作”的内部迭代和并行处理(下面将要讲到);长期目标是将Java向函数式编程语言这个方向引导(并不是要完全变成一门函数式编程语言,只是让它有更多的函数式编程语言的特性),也正是由于这个原因,Oracle并没有简单地使用内部类去实现λ表达式,而是使用了一种更动态、更灵活、易于将来扩展和改变的策略(invokedynamic)。

λ的设计耗费了很多时间和很大的社区力量,最终找到一种折中的实现方案,可以实现简洁而紧凑的语言结构。

1. λ(Lambda)表达式

最简单的λ表达式可三部分组成:参数列表(可以用逗号隔开),箭头(->),以及一个表达式或语句块。

例如:

// 传统表达方式
for (String str :Arrays.asList("a", "b", "d" )){
      System.out.println(str);
 }
// lambda表达方式
Arrays.asList( "a", "b", "d" ).forEach( e -> System.out.println( e ) );

在上面这个代码中的参数e的类型是由编译器推理得出的,你也可以显式指定该参数的类型,例如:

Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.println( e ) );

如果λ表达式需要更复杂的语句块,则可以使用花括号将该语句块括起来,类似于Java中的函数体,例如:

Arrays.asList( "a", "b", "d" ).forEach( e -> {
    System.out.print( e );
    System.out.print( e );
} );

λ表达式可以引用类成员和局部变量(会将这些变量隐式得转换成final的),例如下列两个代码块的效果完全相同:

String separator = ",";
Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) );
final String separator = ",";
Arrays.asList( "a", "b", "d" ).forEach( ( String e ) -> System.out.print( e + separator ) );

λ表达式有返回值,返回值的类型也由编译器推理得出。如果λ表达式中的语句块只有一行,则可以不用使用return语句,下列两个代码片段效果相同:

Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> {
    int result = e1.compareTo( e2 );
    return result;
} );
Arrays.asList( "a", "b", "d" ).sort( ( e1, e2 ) -> e1.compareTo( e2 ) );

2. λ表达式的类型(它是Object吗?)

λ表达式本质上是一个匿名方法。
λ表达式可以被当做是一个Object(注意措辞)。λ表达式的类型,叫做“目标类型(target type)”。λ表达式的目标类型是“函数接口(functional interface)”,这是Java8新引入的概念。它的定义是:一个接口,如果只有一个显式声明的抽象方法,那么它就是一个函数接口。一般用@FunctionalInterface标注出来(也可以不标)。

例如 (注意: 默认方法和静态方法不会破坏函数式接口的定义,因此最后这个Comparator接口和FunctionalDefaultMethods 是合法的。) :

   @FunctionalInterface
    public interface Runnable {
        void run();
    }

    public interface Callable {
        V call() throws Exception;
    }

    public interface Function {
        R apply(T t);
    }

    public interface OnActionListener {
        void onAction(ActionEvent e);
    }

    public interface Comparator {
        int compare(T o1, T o2);
        boolean equals(Object obj);
    }

    public interface DefaultMethods {
        void method();
        default void defaultMethod() {
        }
    }

你可以用一个λ表达式为一个函数接口赋值:

    Runnable r1 = () -> {System.out.println("Hello Lambda!");};

然后再赋值给一个Object:

    Object obj = r1;

但却不能这样干:

    Object obj = () -> {System.out.println("Hello Lambda!");}; // @错误!  Object is not a functional interface!

必须显式的转型成一个函数接口才可以:

    Object o = (Runnable) () -> { System.out.println("hi"); }; // correct

一个λ表达式只有在转型成一个函数接口后才能被当做Object使用。所以下面这句也不能编译:

    System.out.println( () -> {} ); //错误! 目标类型不明

必须先转型:

    System.out.println( (Runnable)() -> {} ); // 正确

假设你自己写了一个函数接口,长的跟Runnable一模一样:

@FunctionalInterface
public interface MyRunnable {
    public void run();
}

那么

    Runnable r1 =    () -> {System.out.println("Hello Lambda!");};
    MyRunnable2 r2 = () -> {System.out.println("Hello Lambda!");};

都是正确的写法。这说明一个λ表达式可以有多个目标类型(函数接口),只要函数匹配成功即可。
但需注意一个λ表达式必须至少有一个目标类型。

3. λ表达式的使用

λ表达式主要用于替换以前广泛使用的内部匿名类,各种回调,比如事件响应器、传入Thread类的Runnable等。看下面的例子

    Thread thread0 = new Thread( new Runnable () {
        @Override
        public void run() {
            System.out.println("This is from an anonymous class.");
        }
    } );
    
    Thread thread1 = new Thread( () -> {
        System.out.println("This is from an anonymous method (lambda exp).");
    } );

注意第二个线程里的λ表达式,你并不需要显式地把它转成一个Runnable,因为Java能根据上下文自动推断出来:一个Thread的构造函数接受一个Runnable参数,而传入的λ表达式正好符合其run()函数,所以Java编译器推断它为Runnable。

集合类的批处理操作是Java8的另一个重要特性,它与λ表达式的配合使用乃是Java8的最主要特性。集合类的批处理操作API的目的是实现集合类的“内部迭代”,并期望充分利用现代多核CPU进行并行计算。
Java8之前集合类的迭代(Iteration)都是外部的,即客户代码。而内部迭代意味着改由Java类库来进行迭代,而不是客户代码。例如:

    for(Object o: list) { // 外部迭代
        System.out.println(o);
    }

可以写成:

    list.forEach(o -> {System.out.println(o);}); //forEach函数实现内部迭代

集合类(包括List)现在都有一个forEach方法,对元素进行迭代(遍历),所以我们不需要再写for循环了。forEach方法接受一个函数接口Consumer做参数,所以可以使用λ表达式。
这种内部迭代方法广泛存在于各种语言,如C++的STL算法库、python、ruby、scala等。

Java8为集合类引入了另一个重要概念:流(stream)。一个流通常以一个集合类实例为其数据源,然后在其上定义各种操作。流的API设计使用了管道(pipelines)模式。对流的一次操作会返回另一个流。如同IO的API或者StringBuffer的append方法那样,从而多个不同的操作可以在一个语句里串起来。例如:

    List shapes = ...
    shapes.stream()
      .filter(s -> s.getColor() == BLUE)
      .forEach(s -> s.setColor(RED));

首先调用stream方法,以集合类对象shapes里面的元素为数据源,生成一个流。然后在这个流上调用filter方法,挑出蓝色的,返回另一个流。最后调用forEach方法将这些蓝色的物体喷成红色(forEach方法不再返回流,而是一个终端方法,类似于StringBuffer在调用若干append之后的那个toString)。

这种处理方式的理解可以参考RxJava, Java8的流处理不在此文中做更多介绍。

λ表达式的更多用法

    // 嵌套的λ表达式
    Callable c1 = () -> () -> { System.out.println("Nested lambda"); };
    c1.call().run();

    // 用在条件表达式中
    Callable c2 = true ? (() -> 42) : (() -> 24);
    System.out.println(c2.call());

定义一个递归函数,注意须用this限定

    protected UnaryOperator factorial = i -> i == 0 ? 1 : i * this.factorial.apply( i - 1 );
    System.out.println(factorial.apply(3));

在Java中,随声明随调用的方式是不行的,比如下面这样,声明了一个λ表达式(x, y) -> x + y,同时企图通过传入实参(2, 3)来调用它:

    int five = ( (x, y) -> x + y ) (2, 3); // 错误ERROR! try to call a lambda in-place

这在C++中是可以的,但Java中不行。Java的λ表达式只能用作赋值、传参、返回值等。

4.方法引用与λ表达式

任何一个λ表达式都可以代表某个函数接口的唯一方法的匿名描述符。我们也可以使用某个类的某个具体方法来代表这个描述符,叫做方法引用。例如:

    Integer::parseInt //静态方法引用
    System.out::print //实例方法引用
    Person::new       //构造器引用

下面是一组例子,教你使用方法引用代替λ表达式:

    //c1 与 c2 是一样的(静态方法引用)
    Comparator c2 = (x, y) -> Integer.compare(x, y);
    Comparator c1 = Integer::compare;
    
    //下面两句是一样的(实例方法引用1)
    persons.forEach(e -> System.out.println(e));
    persons.forEach(System.out::println);
    
    //下面两句是一样的(实例方法引用2)
    persons.forEach(person -> person.eat());
    persons.forEach(Person::eat);
    
    //下面两句是一样的(构造器引用)
    strList.stream().map(s -> new Integer(s));
    strList.stream().map(Integer::new);

使用方法引用,你的程序会变得更短些。现在distinctPrimarySum方法可以改写如下:

    public void distinctPrimarySum(String... numbers) {
        List l = Arrays.asList(numbers);
        int sum = l.stream().map(Integer::new).filter(Primes::isPrime).distinct().sum();
        System.out.println("distinctPrimarySum result is: " + sum);
    }

还有一些其它的方法引用:

    super::toString //引用某个对象的父类方法
    String[]::new //引用一个数组的构造器

你可能感兴趣的:(Java8 λ(Lambda)表达式)