Day48:583. 两个字符串的删除操作、72. 编辑距离

文章目录

    • 583. 两个字符串的删除操作
      • 思路
      • 代码实现
    • 72. 编辑距离
      • 思路
      • 代码实现


583. 两个字符串的删除操作

题目链接

思路

  1. 确定dp数组(dp table)以及下标的含义
    dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数

  2. 确定递推公式
    当word1[i - 1]=word2[j - 1],dp[i][j] = dp[i - 1][j - 1];
    当word1[i - 1] !=word2[j - 1]:

    • 情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1
    • 情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1
    • 情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2,它包含在情况1和2里面

    取最小值,则递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

  3. dp数组初始化
    自行理解
    vector dp(word1.size() + 1, vector(word2.size() + 1));
    for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
    for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

  4. 确定遍历顺序
    递推公式可以看出从上到下,从左到右

  5. 举例推导dp数组

代码实现

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));
        for(int i=1;i<=word1.size();i++)dp[i][0]=i;
        for(int j=1;j<=word2.size();j++)dp[0][j]=j;
        for(int i=1;i<=word1.size();i++){
            for(int j=1;j<=word2.size();j++){
                if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];
                else dp[i][j]=min(dp[i-1][j]+1,dp[i][j-1]+1);
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

72. 编辑距离

题目链接

思路

和上面那道题几乎一模一样
只不过在编辑时不仅有增删操作,还有替换操作,所以
if(word1[i-1]!=word2[j-1])dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+1));
其中:
增删:dp[i-1][j]+1,dp[i][j-1]+1
替换:dp[i-1][j-1]+1

代码实现

class Solution {
public:
    int minDistance(string word1, string word2) {
        vector<vector<int>> dp(word1.size()+1,vector<int>(word2.size()+1,0));
        for(int i=1;i<=word1.size();i++)dp[i][0]=i;
        for(int j=1;j<=word2.size();j++)dp[0][j]=j;
        for(int i=1;i<=word1.size();i++){
            for(int j=1;j<=word2.size();j++){
                if(word1[i-1]==word2[j-1])dp[i][j]=dp[i-1][j-1];
                else dp[i][j]=min(dp[i-1][j]+1,min(dp[i][j-1]+1,dp[i-1][j-1]+1));
            }
        }
        return dp[word1.size()][word2.size()];
    }
};

你可能感兴趣的:(leetcode,算法)