数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树

目录

  • 前言
  • 实现红黑树的基本思想
  • 插入操作的平衡调整
  • 删除操作的平衡调整
  • 解答开篇
  • 内容小结

前言

数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第1张图片
本节课程思维导图:
数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第2张图片
红黑树是一个让我又爱又恨的数据结构,“爱”是因为它稳定、高效的性能,“恨”是因为实现起来实在太难了。对于绝大部分开发工程师来说,这辈子你可能都用不着亲手写一个红黑树,所以没必要去死磕它。
上一节,我们讲到红黑树定义的时候,提到红黑树的叶子节点都是黑色的空节点。当时我只是粗略地解释了,这是为了代码实现方便,那更加确切的原因是什么呢?

实现红黑树的基本思想

实际上,红黑树的平衡过程跟魔方复原非常神似,大致过程就是:遇到什么样的节点排布,我们就对应怎么去调整。只要按照这些固定的调整规则来操作,就能将一个非平衡的红黑树调整成平衡的。

一棵合格的红黑树需要满足这样几个要求:

  1. 根节点是黑色的;
  2. 每个叶子节点都是黑色的空节点(NIL),也就是说,叶子节点不存储数据;
  3. 任何相邻的节点都不能同时为红色,也就是说,红色节点是被黑色节点隔开的;
  4. 每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点。

在插入、删除节点的过程中,第三、第四点要求可能会被破坏,而我们今天要讲的“平衡调整”,实际上就是要把被破坏的第三、第四点恢复过来。
我先介绍两个非常重要的操作,左旋(rotate left)、右旋(rotate right)。左旋全称其实是叫围绕某个节点的左旋,右旋全称其实叫围绕某个节点的右旋。我们下面的平衡调整中,会一直用到这两个操作,所以我这里画了个示意图,帮助你彻底理解这两个操作。图中的 a,b,r 表示子树,可以为空。
数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第3张图片
左旋是指将当前节点的右子节点旋转为当前节点的父节点,同时将当前节点作为其右子节点的左子节点。右旋是指将当前节点的左子节点旋转为当前节点的父节点,同时将当前节点作为其左子节点的右子节点。

插入操作的平衡调整

首先,我们来看插入操作。
红黑树规定,插入的节点必须是红色的。而且,二叉查找树中新插入的节点都是放在叶子节点上。所以,关于插入操作的平衡调整,有这样两种特殊情况,但是也都非常好处理。
如果插入节点的父节点是黑色的,那我们什么都不用做,它仍然满足红黑树的定义。如果插入的节点是根节点,那我们直接改变它的颜色,把它变成黑色就可以了。除此之外,其他情况都会违背红黑树的定义,于是我们就需要进行调整,调整的过程包含两种基础的操作:左右旋转和改变颜色。
红黑树的平衡调整过程是一个迭代的过程。我们把正在处理的节点叫做关注节点。关注节点会随着不停地迭代处理,而不断发生变化。最开始的关注节点就是新插入的节点。新节点插入之后,如果红黑树的平衡被打破,那一般会有下面三种情况。我们只需要根据每种情况的特点,不停地调整,就可以让红黑树继续符合定义,也就是继续保持平衡。我们下面依次来看每种情况的调整过程。提醒你注意下,为了简化描述,我把父节点的兄弟节点叫做叔叔节点,父节点的父节点叫做祖父节点。

CASE 1:如果关注节点是 a,它的叔叔节点 d 是红色,我们就依次执行下面的操作:

  1. 将关注节点 a 的父节点 b、叔叔节点 d 的颜色都设置成黑色;
  2. 将关注节点 a 的祖父节点 c 的颜色设置成红色;
  3. 关注节点变成 a 的祖父节点 c;跳到 CASE 2 或者 CASE 3。
    数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第4张图片
    CASE 2:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的右子节点,我们就依次执行下面的操作:
  4. 关注节点变成节点 a 的父节点 b;
  5. 围绕新的关注节点b 左旋;
  6. 跳到 CASE 3。
    数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第5张图片
    CASE 3:如果关注节点是 a,它的叔叔节点 d 是黑色,关注节点 a 是其父节点 b 的左子节点,我们就依次执行下面的操作:
  7. 围绕关注节点 a 的祖父节点 c 右旋;
  8. 将关注节点 a 的父节点 b、兄弟节点 c 的颜色互换。
  9. 调整结束。

数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第6张图片

删除操作的平衡调整

红黑树插入操作的平衡调整还不是很难,但是它的删除操作的平衡调整相对就要难多了。

删除操作的平衡调整分为两步,第一步是针对删除节点初步调整。初步调整只是保证整棵红黑树在一个节点删除之后,仍然满足最后一条定义的要求,也就是说,每个节点,从该节点到达其可达叶子节点的所有路径,都包含相同数目的黑色节点;第二步是针对关注节点进行二次调整,让它满足红黑树的第三条定义,即不存在相邻的两个红色节点。

  1. 针对删除节点初步调整

在下面的讲解中,如果一个节点既可以是红色,也可以是黑色,在画图的时候,我会用一半红色一半黑色来表示。如果一个节点是“红 - 黑”或者“黑 - 黑”,我会用左上角的一个小黑点来表示额外的黑色。
CASE 1:如果要删除的节点是 a,它只有一个子节点 b,那我们就依次进行下面的操作:
删除节点 a,并且把节点 b 替换到节点 a 的位置,这一部分操作跟普通的二叉查找树的删除操作一样;

  • 节点 a 只能是黑色,节点 b 也只能是红色,其他情况均不符合红黑树的定义。
  • 这种情况下,我们把节点 b 改为黑色;
  • 调整结束,不需要进行二次调整。

数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第7张图片
CASE 2:如果要删除的节点 a 有两个非空子节点,并且它的后继节点就是节点 a 的右子节点 c。我们就依次进行下面的操作:
如果节点 a 的后继节点就是右子节点 c,那右子节点 c 肯定没有左子树。我们把节点 a 删除,并且将节点 c 替换到节点 a 的位置。这一部分

  • 操作跟普通的二叉查找树的删除操作无异;
  • 然后把节点 c 的颜色设置为跟节点 a 相同的颜色;
  • 如果节点 c 是黑色,为了不违反红黑树的最后一条定义,我们给节点 c 的右子节点 d 多加一个黑色,这个时候节点 d 就成了“红 - 黑”或者“黑 - 黑”;
  • 这个时候,关注节点变成了节点 d,第二步的调整操作就会针对关注节点来做。

CASE 3:如果要删除的是节点 a,它有两个非空子节点,并且节点 a 的后继节点不是右子节点,我们就依次进行下面的操作:

  • 找到后继节点 d,并将它删除,删除后继节点 d 的过程参照 CASE 1;
  • 将节点 a 替换成后继节点 d;把节点 d 的颜色设置为跟节点 a 相同的颜色;
  • 如果节点 d 是黑色,为了不违反红黑树的最后一条定义,我们给节点 d 的右子节点 c 多加一个黑色,这个时候节点 c 就成了“红 - 黑”或者“黑 - 黑”;
  • 这个时候,关注节点变成了节点 c,第二步的调整操作就会针对关注节点来做。
    数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第8张图片
  • 针对关注节点进行二次调整
    经过初步调整之后,关注节点变成了“红 - 黑”或者“黑 - 黑”节点。针对这个关注节点,我们再分四种情况来进行二次调整。二次调整是为了让红黑树中不存在相邻的红色节点。
    CASE 1:如果关注节点是 a,它的兄弟节点 c 是红色的,我们就依次进行下面的操作:
  • 围绕关注节点 a 的父节点 b 左旋;
  • 关注节点 a 的父节点 b 和祖父节点 c 交换颜色;
  • 关注节点不变;
  • 继续从四种情况中选择适合的规则来调整。
    数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第9张图片
    CASE 2:如果关注节点是 a,它的兄弟节点 c 是黑色的,并且节点 c 的左右子节点 d、e 都是黑色的,我们就依次进行下面的操作:
  • 将关注节点 a 的兄弟节点 c 的颜色变成红色;
  • 从关注节点 a 中去掉一个黑色,这个时候节点 a 就是单纯的红色或者黑色;
  • 给关注节点a 的父节点 b 添加一个黑色,这个时候节点 b 就变成了“红 - 黑”或者“黑 - 黑”;
  • 关注节点从 a 变成其父节点 b;
  • 继续从四种情况中选择符合的规则来调整。
    数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第10张图片
    CASE 3:如果关注节点是 a,它的兄弟节点 c 是黑色,c 的左子节点 d 是红色,c 的右子节点 e 是黑色,我们就依次进行下面的操作:
  • 围绕关注节点 a 的兄弟节点 c 右旋;
  • 节点 c 和节点 d 交换颜色;
  • 关注节点不变;
  • 跳转到 CASE 4,继续调整。

数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第11张图片
CASE 4:如果关注节点 a 的兄弟节点 c 是黑色的,并且 c 的右子节点是红色的,我们就依次进行下面的操作:

  • 围绕关注节点 a 的父节点 b 左旋;
  • 将关注节点 a 的兄弟节点 c 的颜色,跟关注节点 a 的父节点 b 设置成相同的颜色;
  • 将关注节点 a 的父节点 b 的颜色设置为黑色;
  • 从关注节点 a 中去掉一个黑色,节点 a 就变成了单纯的红色或者黑色;
  • 将关注节点 a 的叔叔节点 e 设置为黑色;调整结束。
    数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第12张图片

解答开篇

为什么红黑树的定义中,要求叶子节点是黑色的空节点?
要我说,之所以有这么奇怪的要求,其实就是为了实现起来方便。只要满足这一条要求,那在任何时刻,红黑树的平衡操作都可以归结为我们刚刚讲的那几种情况。
还是有点不好理解,我通过一个例子来解释一下。假设红黑树的定义中不包含刚刚提到的那一条“叶子节点必须是黑色的空节点”,我们往一棵红黑树中插入一个数据,新插入节点的父节点也是红色的,两个红色的节点相邻,这个时候,红黑树的定义就被破坏了。那我们应该如何调整呢?
数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第13张图片
你会发现,这个时候,我们前面在讲插入时,三种情况下的平衡调整规则,没有一种是适用的。但是,如果我们把黑色的空节点都给它加上,变成下面这样,你会发现,它满足 CASE 2 了。
数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第14张图片
你可能会说,这样给红黑树添加黑色的空的叶子节点,会不会比较浪费存储空间呢?答案是不会的。虽然我们在讲解或者画图的时候,每个黑色的、空的叶子节点都是独立画出来的。实际上,在具体实现的时候,我们只需要像下面这样,共用一个黑色的、空的叶子节点就行了。
数据结构与算法之美学习笔记:26 | 红黑树(下):掌握这些技巧,你也可以实现一个红黑树_第15张图片

内容小结

现在,我就来总结一下,如何比较轻松地看懂我今天讲的操作过程。
第一点,把红黑树的平衡调整的过程比作魔方复原,不要过于深究这个算法的正确性。你只需要明白,只要按照固定的操作步骤,保持插入、删除的过程,不破坏平衡树的定义就行了。
第二点,找准关注节点,不要搞丢、搞错关注节点。因为每种操作规则,都是基于关注节点来做的,只有弄对了关注节点,才能对应到正确的操作规则中。在迭代的调整过程中,关注节点在不停地改变,所以,这个过程一定要注意,不要弄丢了关注节点。
第三点,插入操作的平衡调整比较简单,但是删除操作就比较复杂。针对删除操作,我们有两次调整,第一次是针对要删除的节点做初步调整,让调整后的红黑树继续满足第四条定义,“每个节点到可达叶子节点的路径都包含相同个数的黑色节点”。但是这个时候,第三条定义就不满足了,有可能会存在两个红色节点相邻的情况。第二次调整就是解决这个问题,让红黑树不存在相邻的红色节点。

你可能感兴趣的:(数据结构与算法之美学习笔记,数据结构,算法)