AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统

AI为工业产业智能化数字化赋能早已不是什么新鲜事,越来越多的行业和领域开始更大范围去拥抱AI,享受科技带来的变革力量,在我们之前的文章中也有很多相关领域项目的实践经历,本文的核心目标就是想要基于钢铁领域产品数据来开发构建自动化智能质检系统,以期探索AI助力钢铁产业产品质检的可行性,首先看下效果:

简单看下数据集:

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第1张图片

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第2张图片

本文选择的是yolov5系列的模型,这里以s系列的模型为例看下详情:
训练数据配置文件如下:

# Dataset
path: ./dataset
train:
  - images/train
val:
  - images/test
test:
  - images/test



# Classes
names:
  0: chongkong
  1: hanfeng
  2: yueyawan
  3: shuiban
  4: youban
  5: siban
  6: yiwu
  7: yahen
  8: zhehen
  9: yaozhe

模型文件如下:

# YOLOv5  by Ultralytics, GPL-3.0 license

# Parameters
nc: 10  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

#Backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

#Head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

默认100次epoch的迭代计算,结果详情如下所示:

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第3张图片

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第4张图片

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置。

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第5张图片

【PR曲线】
精确率-召回率曲线(Precision-Recall Curve)是一种用于评估二分类模型性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)和召回率(Recall)之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率-召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率-召回率曲线。
根据曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
精确率-召回率曲线提供了更全面的模型性能分析,特别适用于处理不平衡数据集和关注正例预测的场景。曲线下面积(Area Under the Curve, AUC)可以作为评估模型性能的指标,AUC值越高表示模型的性能越好。
通过观察精确率-召回率曲线,我们可以根据需求选择合适的阈值来权衡精确率和召回率之间的平衡点。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第6张图片

【label数据分布可视化】

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第7张图片

【混淆矩阵】

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第8张图片

【训练可视化】

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第9张图片

【Batch计算实例】

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第10张图片

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第11张图片

这里也基于GradCam计算测试了样例图像的heatmap,如下所示:

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第12张图片

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第13张图片

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第14张图片

AI助力钢铁产业数字化,python基于YOLOv5开发构建钢铁产业产品智能自动化检测识别系统_第15张图片

感兴趣的也都可以自行尝试实践下,可能会有不同的收获! 

你可能感兴趣的:(人工智能,YOLO,自动化)