图是一种非常灵活且强大的数据结构,它由节点(顶点)和边组成,用于表示对象之间的关系。在本文中,我们将深入讲解Python中的图,包括图的基本概念、表示方法、遍历算法以及一些实际应用。我们将使用代码示例演示图的操作和应用。
在图的概念中,我们主要涉及以下几个基本元素:
在Python中,图可以使用多种方式表示,其中两种常见的表示方法是邻接矩阵和邻接表。
邻接矩阵是一个二维数组,其中的元素 matrix[i][j] 表示节点 i 和节点 j 之间是否存在边。对于有权图,矩阵的元素可以表示边的权重。
class Graph:
def __init__(self, vertices):
self.vertices = vertices
self.adj_matrix = [[0] * vertices for _ in range(vertices)]
def add_edge(self, start, end, weight=1):
self.adj_matrix[start][end] = weight
self.adj_matrix[end][start] = weight # 无向图需要考虑反向
# 示例
graph = Graph(5)
graph.add_edge(0, 1)
graph.add_edge(0, 2)
graph.add_edge(1, 3)
graph.add_edge(2, 4)
邻接表使用字典或哈希表来表示图,其中每个节点对应一个链表,存储与该节点相邻的节点及边的信息。
from collections import defaultdict
class Graph:
def __init__(self):
self.adj_list = defaultdict(list)
def add_edge(self, start, end, weight=1):
self.adj_list[start].append((end, weight))
self.adj_list[end].append((start, weight)) # 无向图需要考虑反向
# 示例
graph = Graph()
graph.add_edge(0, 1)
graph.add_edge(0, 2)
graph.add_edge(1, 3)
graph.add_edge(2, 4)
图的遍历是一种访问图中所有节点的方式,常用的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索从起始节点开始,尽可能深地访问图的分支,直到无法继续为止,然后回溯到上一个节点,继续深度优先搜索。
def dfs(graph, start, visited=None):
if visited is None:
visited = set()
visited.add(start)
print(start, end=" ")
for neighbor, _ in graph.adj_list[start]:
if neighbor not in visited:
dfs(graph, neighbor, visited)
# 示例
dfs(graph, 0)
广度优先搜索从起始节点开始,首先访问其所有邻居节点,然后逐层扩展,直到图中所有节点都被访问。
from collections import deque
def bfs(graph, start):
visited = set()
queue = deque([start])
visited.add(start)
print(start, end=" ")
while queue:
current = queue.popleft()
for neighbor, _ in graph.adj_list[current]:
if neighbor not in visited:
queue.append(neighbor)
visited.add(neighbor)
print(neighbor, end=" ")
# 示例
bfs(graph, 0)
图的应用非常广泛,其中一些常见的应用包括: