elasticsearch 实战

文章目录

      • 项目介绍
      • 导入项目
  • Elasticsearch Java API 查询文档
    • 快速入门
      • 发起查询请求
      • 解析响应
      • 完整代码
    • match查询
    • 精确查询
    • 布尔查询
    • 排序、分页
    • 高亮
      • 高亮请求构建
      • 高亮结果解析

项目介绍

本项目是一个由spring boot 3.0.2在gradle 8.4和java 21的环境下搭建的elasticsearch项目demo,这个项目是基于新版的Elasticsearch Java API 制作的,符合最新的框架要求,由于是运用了Elasticsearch新版的java jar包,所以在查询的时候使用了大量的Stream流式编程和闭包,亦可以作为流式编程的巩固。

导入项目

项目可以使用文章绑定的资源,或者去底部的GitHub地址下载

Elasticsearch Java API 查询文档

快速入门

我们以match_all查询为例

发起查询请求

elasticsearch 实战_第1张图片

代码解读
上面的代码使用了流式编程的思想,首先选择用search表示是选择查询模式,然后用index决定搜索的索引库,然后用query构建查询索引,然后选择查询模式matchAll。

es中的查询语句

GET hotel/_search
{
  "query": {
    "match_all": {}
  }
}

解析响应

elasticsearch返回的结果是一个JSON字符串,结构包含:

  • hits:命中的结果
    • total:总条数,其中的value是具体的总条数值
    • max_score:所有结果中得分最高的文档的相关性算分
    • hits:搜索结果的文档数组,其中的每个文档都是一个json对象
      • source:文档中的原始数据,也是json转化成实体类的对象

因此,我们解析响应结果,就是逐层解析JSON字符串,流程如下:

  • HitsMetadata:通过response.hits()获取,就是JSON中的最外层的hits,代表命中的结果
    • HitsMetadata.total().value():获取总条数信息
    • SearchHits#getHits():获取SearchHit数组,也就是文档数组

完整代码

完整代码如下:

    @Test
    void testMatchAll() throws IOException {
//进行查询
        SearchResponse<HotelDoc> response = esClient.search(s -> s
                        .index("hotel")
                        .query(q -> q
                                .matchAll(m->m)),
                HotelDoc.class
        );
        handleResponse(response);
    }
    private void handleResponse( SearchResponse<HotelDoc> response) {
        HitsMetadata<HotelDoc> searchHits = response.hits();
        // 4.1.总条数
        long total = searchHits.total().value();
        System.out.println("总条数:" + total);
        // 4.2.获取文档数组
        List<Hit<HotelDoc>>  hits = searchHits.hits();
        // 4.3.遍历
        hits.forEach(i->{
            // 4.4 自动序列化
            HotelDoc hotelDoc = i.source();
            // 4.6.处理高亮结果
            // 1)获取高亮字段和高亮数据的map
            Map<String, List<String>>  map = i.highlight();
            if (map!=null){
                // 2)根据字段名,获取高亮结果
                List<String> name = map.get("name");
                if (name!=null){
                    // 3)获取高亮结果字符串数组中的第1个元素
                    String hName= name.get(0);
                    // 4)把高亮结果放到HotelDoc中
                    hotelDoc.setName(hName);
                }
            }
            System.out.println(hotelDoc);
//            System.out.println(i.highlight());
        });

        }

match查询

全文检索的match和multi_match查询与match_all的API基本一致。差别是查询条件,也就是query的部分。

elasticsearch 实战_第2张图片

因此,Java代码上的差异主要是request.source().query()中的参数了。同样是利用QueryBuilders提供的方法:

而结果解析代码则完全一致,可以抽取并共享。

完整代码如下:

    @Test
    void testMatch() throws IOException {

        SearchResponse<HotelDoc> response = esClient.search(i->i
                .index("hotel")
                .query(q->q.match(t->t
                        .field("all")//设置请求字段
                        .query("如家")//设置请求参数
                )),
                HotelDoc.class
        );
        handleResponse(response);
    }

精确查询

精确查询主要是两者:

  • term:词条精确匹配
  • range:范围查询

与之前的查询相比,差异同样在查询条件,其它都一样。

es语句

GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  }
}

查询条件构造的API如下:


        SearchResponse<HotelDoc> response = esClient.search(s -> s
                        .index("hotel")
                        .query(q->q.
                                    term(t->t
                                    .field("city")
                                    .value("上海"))),

布尔查询

布尔查询是用must、must_not、filter等方式组合其它查询,代码示例如下:

es语句

GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  }
}

完整代码如下:

    @Test
    void testMatch() throws IOException {

        SearchResponse<HotelDoc> response = esClient.search(i->i
                .index("hotel")
                .query(q->q.match(t->t
                        .field("all")//设置请求字段
                        .query("如家")//设置请求参数
                )),
                HotelDoc.class
        );
        handleResponse(response);
    }

排序、分页

es语句

GET hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0,
  "size": 5,
  "sort": [
    {
      "price": {
        "order": "desc"
      }
    }
  ]

}

完整代码示例:

@Test
void testPageAndSort() throws IOException {
    // 页码,每页大小
    int page = 1, size = 5;

    // 1.准备Request
    SearchRequest request = new SearchRequest("hotel");
    // 2.准备DSL
    // 2.1.query
    request.source().query(QueryBuilders.matchAllQuery());
    // 2.2.排序 sort
    request.source().sort("price", SortOrder.ASC);
    // 2.3.分页 from、size
    request.source().from((page - 1) * size).size(5);
    // 3.发送请求
    SearchResponse response = client.search(request, RequestOptions.DEFAULT);
    // 4.解析响应
    handleResponse(response);

}

高亮

高亮的代码与之前代码差异较大,有两点:

  • 查询的DSL:其中除了查询条件,还需要添加高亮条件,同样是与query同级。
  • 结果解析:结果除了要解析_source文档数据,还要解析高亮结果

高亮请求构建

es语句

GET /hotel/_search
{
  "query": {
    "match": {
      "all": "如家"
    }
  },
  "highlight": {
    "fields": {"name": {"require_field_match": "false"}}
  }
}

上述代码省略了查询条件部分,但是大家不要忘了:高亮查询必须使用全文检索查询,并且要有搜索关键字,将来才可以对关键字高亮。

完整代码如下:

    @Test
    void testHighlight() throws IOException {
        SearchResponse<HotelDoc> response = esClient.search(s->s
                        .index("hotel")
                        .query(q->q.match(t->t
                                .field("all")//设置请求字段
                                .query("如家")//设置请求参数
                        ))
                        .highlight(h->h
                                .fields("name",f->f.requireFieldMatch(false))),
                HotelDoc.class
        );
        handleResponse(response);
    }

高亮结果解析

高亮的结果与查询的文档结果默认是分离的,并不在一起。

代码解读:

  • 第一步:从结果中获取source。hit.getSourceAsString(),这部分是非高亮结果,json字符串。还需要反序列为HotelDoc对象
  • 第二步:获取高亮结果。hit.getHighlightFields(),返回值是一个Map,key是高亮字段名称,值是HighlightField对象,代表高亮值
  • 第三步:从map中根据高亮字段名称,获取高亮字段值对象HighlightField
  • 第四步:从HighlightField中获取Fragments,并且转为字符串。这部分就是真正的高亮字符串了
  • 第五步:用高亮的结果替换HotelDoc中的非高亮结果

完整代码如下:

private void handleResponse(SearchResponse response) {
    // 4.解析响应
    SearchHits searchHits = response.getHits();
    // 4.1.获取总条数
    long total = searchHits.getTotalHits().value;
    System.out.println("共搜索到" + total + "条数据");
    // 4.2.文档数组
    SearchHit[] hits = searchHits.getHits();
    // 4.3.遍历
    for (SearchHit hit : hits) {
        // 获取文档source
        String json = hit.getSourceAsString();
        // 反序列化
        HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);
        // 获取高亮结果
        Map<String, HighlightField> highlightFields = hit.getHighlightFields();
        if (!CollectionUtils.isEmpty(highlightFields)) {
            // 根据字段名获取高亮结果
            HighlightField highlightField = highlightFields.get("name");
            if (highlightField != null) {
                // 获取高亮值
                String name = highlightField.getFragments()[0].string();
                // 覆盖非高亮结果
                hotelDoc.setName(name);
            }
        }
        System.out.println("hotelDoc = " + hotelDoc);
    }
}

你可能感兴趣的:(#,elasticsearch,elasticsearch,java,笔记,搜索引擎)