python多进程、多线程及协程爬虫速度比较

目录

  1. 只用request爬取
  2. 用多线程爬取
  3. 用多进程爬取
  4. 用协程爬取
  5. 用协程+多进程爬取

1. 只用request爬取

花费时间:139.34340秒

image.png

代码:

# coding=utf8
import requests
from bs4 import BeautifulSoup
import time


def do_task(domain, pageUrl):
    response = requests.get(pageUrl)
    if response.status_code != 200:
        raise Exception('http error, url:{} code:{}'.format(pageUrl, response.status_code))
    soup = BeautifulSoup(response.content, 'html.parser')
    for h in soup.select('h3>a'):
        url = ''.join([domain, h.get('href')])
        html = requests.get(url)
        print('url:{} title:{}'.format(url, parse_text(html)))


def parse_text(html):
    soup = BeautifulSoup(html.content, 'html.parser')
    return str(soup.select('.shici-title')[0].get_text())


def main():
    domain = 'http://www.shicimingju.com'
    urlTemplate = domain + '/chaxun/zuozhe/9_{0}.html'
    pageNum = 50  # 读取50页诗词进行测试
    for num in range(pageNum):
        do_task(domain, urlTemplate.format(num + 1))


if __name__ == '__main__':
    start = time.time()
    main()  # 调用方
    print('总耗时:%.5f秒' % float(time.time()-start))

2.使用多线程

花费时间:42.83238秒

image.png

代码:

# coding=utf8
import requests
from bs4 import BeautifulSoup
import time
import threading


def do_task(domain, pageUrl):
    response = requests.get(pageUrl)
    if response.status_code != 200:
        raise Exception('http error, url:{} code:{}'.format(pageUrl, response.status_code))
    soup = BeautifulSoup(response.content, 'html.parser')
    for h in soup.select('h3>a'):
        url = ''.join([domain, h.get('href')])
        html = requests.get(url)
        print('url:{} title:{}'.format(url, parse_text(html)))


def parse_text(html):
    soup = BeautifulSoup(html.content, 'html.parser')
    return str(soup.select('.shici-title')[0].get_text())


def main():
    domain = 'http://www.shicimingju.com'
    urlTemplate = domain + '/chaxun/zuozhe/9_{0}.html'
    pageNum = 50  # 读取50页诗词进行测试
    threads = []
    for num in range(pageNum):
        num += 1
        # 开50个线程
        t = threading.Thread(target=do_task, name='LoopThread' + str(num), args=(domain, urlTemplate.format(num)))
        threads.append(t)
    for t in threads:
        t.start()  # 启动线程
    for t in threads:
        t.join()   # 同步线程


if __name__ == '__main__':
    start = time.time()
    main()  # 调用方
    print('总耗时:%.5f秒' % float(time.time()-start))

3. 多进程

CPU 8 核
4进程 总耗时:49.22848秒

image.png

8进程 总耗时:22.08792秒

image.png

代码:

from multiprocessing import Pool
import requests
from bs4 import BeautifulSoup
import time


def do_task(domain, pageUrl):
    response = requests.get(pageUrl)
    if response.status_code != 200:
        raise Exception('http error, url:{} code:{}'.format(pageUrl, response.status_code))
    soup = BeautifulSoup(response.content, 'html.parser')
    for h in soup.select('h3>a'):
        url = ''.join([domain, h.get('href')])
        html = requests.get(url)
        print('url:{} title:{}'.format(url, parse_text(html)))


def parse_text(html):
    soup = BeautifulSoup(html.content, 'html.parser')
    return str(soup.select('.shici-title')[0].get_text())


def main():
    p = Pool(8)  # 我的CPU是八核的就用8个进程
    domain = 'http://www.shicimingju.com'
    urlTemplate = domain + '/chaxun/zuozhe/9_{0}.html'
    pageNum = 50  # 读取50页诗词进行测试
    for num in range(pageNum):
        p.apply_async(do_task, args=(domain, urlTemplate.format(num + 1)))
    p.close()
    p.join()  # 运行完所有子进程才能顺序运行后续程序


if __name__ == '__main__':
    start = time.time()
    main()  # 调用方
    print('总耗时:%.5f秒' % float(time.time() - start))

4. 协程

总耗时:35.39297秒

image.png

代码:

from bs4 import BeautifulSoup
import time
import aiohttp
import asyncio


async def do_task(domain, pageUrl):
    async with aiohttp.ClientSession() as session:
        async with session.request('GET', pageUrl) as resp:
            if resp.status != 200:
                raise Exception('http error, url:{} code:{}'.format(pageUrl, resp.status))
            html = await resp.read()  # 可直接获取bytes
    soup = BeautifulSoup(html, 'html.parser')
    for h in soup.select('h3>a'):
        url = ''.join([domain, h.get('href')])
        async with aiohttp.ClientSession() as session:
            async with session.request('GET', url) as resp:
                if resp.status != 200:
                    raise Exception('http error, url:{} code:{}'.format(pageUrl, resp.status))
                html = await resp.read()  # 可直接获取bytes
        print('url:{} title:{}'.format(url, parse_text(html)))


def parse_text(html):
    soup = BeautifulSoup(html, 'html.parser')
    return str(soup.select('.shici-title')[0].get_text())


def main():
    domain = 'http://www.shicimingju.com'
    urlTemplate = domain + '/chaxun/zuozhe/9_{0}.html'
    pageNum = 50  # 读取50页诗词进行测试
    loop = asyncio.get_event_loop()  # 获取事件循环
    tasks = []
    for num in range(pageNum):
        tasks.append(do_task(domain, urlTemplate.format(num + 1)))
    loop.run_until_complete(asyncio.wait(tasks))  # 协程
    loop.close()


if __name__ == '__main__':
    start = time.time()
    main()  # 调用方
    print('总耗时:%.5f秒' % float(time.time() - start))

5. 用协程+多进程

CPU 8核
4进程 总耗时:27.81880秒


image.png

8进程 总耗时:26.87100秒


image.png

代码:

from multiprocessing import Pool
from bs4 import BeautifulSoup
import time
import aiohttp
import asyncio

html_contents = {}


async def do_task(domain, pageUrl):
    async with aiohttp.ClientSession() as session:
        async with session.request('GET', pageUrl) as resp:
            if resp.status != 200:
                raise Exception('http error, url:{} code:{}'.format(pageUrl, resp.status))
            html = await resp.read()  # 可直接获取bytes
    soup = BeautifulSoup(html, 'html.parser')
    for h in soup.select('h3>a'):
        url = ''.join([domain, h.get('href')])
        async with aiohttp.ClientSession() as session:
            async with session.request('GET', url) as resp:
                if resp.status != 200:
                    raise Exception('http error, url:{} code:{}'.format(pageUrl, resp.status))
                html = await resp.read()  # 可直接获取bytes
                html_contents[url] = html


def parse_text(url, html):
    soup = BeautifulSoup(html, 'html.parser')
    title = str(soup.select('.shici-title')[0].get_text())
    print(url, title, flush=True)

def main():
    domain = 'http://www.shicimingju.com'
    urlTemplate = domain + '/chaxun/zuozhe/9_{0}.html'
    pageNum = 50  # 读取50页诗词进行测试
    loop = asyncio.get_event_loop()  # 获取事件循环
    # 协程抓取网页内容 缺点是需要额外存储 本来用yield迭代,但在协程里面不知道怎么写 留坑 以后优化
    tasks = []
    for num in range(pageNum):
        tasks.append(do_task(domain, urlTemplate.format(num + 1)))
    loop.run_until_complete(asyncio.wait(tasks))  # 协程
    loop.close()
    # 多进程解析
    p = Pool(8)  # 我的CPU是八核的就用8个进程
    for url, html in html_contents.items():
        p.apply_async(parse_text, args=(url, html))
    p.close()
    p.join()  # 运行完所有子进程才能顺序运行后续程序


if __name__ == '__main__':
    start = time.time()
    main()  # 调用方
    print('总耗时:%.5f秒' % float(time.time() - start))

6. 总结

没有做任何处理的request最差,这个毋庸置疑。

对爬取网页这种IO密集型来说:
多进程(8个进程)看起来似乎是速度最佳的,但是他是耗费电脑大量资源(CPU/内存等)的情况下达到的速度;多线程速度次之,资源也相对较少(在python只能使用单核),而单独而言,协程是单独一个线程的情况下,三者中速度表现最好的。

最后做了一个实验,是通过协程抓取网页,然后用多进程处理,这个速度也还可以,IO密集型用协程,CPU密集型用协程已经没什么用了,所有只能用多进程来处理。
但在此解析url用到的时间所占比例确实太小,因此此处对性能的提高并非特别明显。

你可能感兴趣的:(python多进程、多线程及协程爬虫速度比较)