【图像分类】基于深度学习的中草药分类系统的设计与实现(ResNet网络,附代码和数据集)

写在前面:
首先感谢兄弟们的关注和订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。
(专栏订阅用户订阅专栏后免费提供数据集和源码一份,超级VIP用户不在服务范围之内,不想订阅专栏的兄弟们可以私信我详聊,最好还是订阅,将知识装进自己的脑袋里)

本篇博文,我们将使用PyTorch深度学习框架搭建ResNet实现中草药分类,附完整的项目代码和数据集,可以说是全网最详细的手把手教程,初学者可以很好的入门,论文/设计可参考借鉴,其他研究者可以加深ResNet的理解。

先看本项目训练的分类模型的识别效果:

ResNet(Residual Neural Network)由微软研究院的Kaiming He等四名华人提出,通过使用ResNet Unit成功训练出了152层的神经网络,并在ILSVRC2015比赛中取得冠军,在top5上的错误率为3.57%,同时参数量比VGGNet低,效果非常突出。ResNet的结构可以极快的加速神经网络的训练,模型的准确率也有比较大的提升。同时ResNet的推广性非常好,甚至可以直接用到InceptionNet网络中。

本文基于PyTorch深度学习框架搭建ResNet,并用于钢轨缺陷识别,是一个很有意义的教程,希望大家可以学会训练图像分类模型的流程以及套路,更深层次的了解ResNet网络结构。

你可能感兴趣的:(深度学习之图像分类实战,分类,深度学习,网络)