- 从多源融合文档:使用LangChain合并加载器的指南
dsndnwfk
langchainphp开发语言python
#从多源融合文档:使用LangChain合并加载器的指南在数据驱动的世界中,处理和分析数据并不总是来自单一来源。通常,我们需要从多个文档中提取信息,以便全面了解一个主题或进行复杂的数据分析。本文将介绍如何使用LangChain的各种文档加载器来合并多个来源的数据,使得数据处理变得更加高效和简便。##1.引言在现代数据分析中,我们经常需要从多个文档中提取有价值的信息。这些文档可能以不同的格式存在,并
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- 脑机新手指南(二十一)基于 Brainstorm 的 MEG/EEG 数据分析(上篇)
Brduino脑机接口技术答疑
脑机新手指南数据分析数据挖掘
一、脑机接口与神经电生理技术概述脑机接口(Brain-ComputerInterface,BCI)是一种在大脑与外部设备之间建立直接通信通道的技术,它通过采集和分析大脑信号来实现对设备的控制或信息的输出。神经电生理信号作为脑机接口的重要数据来源,主要包括以下几种类型:MEG(脑磁图):通过测量大脑神经元电活动产生的磁场变化来反映脑功能,具有极高的时间分辨率。EEG(脑电图):通过头皮电极记录大脑皮
- 38、Seabor的联合图和成对图的绘制【用Python进行AI数据分析进阶教程】
理工男大辉郎
python人工智能数据分析
用Python进行AI数据分析进阶教程38:Seabor的联合图和成对图的绘制关键词:Seaborn、联合图(JointPlot)、成对图(PairPlot)、数据类型、变量关系摘要:本文介绍了Seaborn库中的联合图(JointPlot)和成对图(PairPlot)的绘制方法。联合图用于展示两个变量之间的关系及各自分布,支持散点图、直方图、核密度估计图等多种类型,适用于连续型变量分析,可自定义
- iOS 调试流程优化指南:多项目协作下的问题分析与日志追踪实践
2501_91592143
httpudphttpswebsocket网络安全网络协议tcp/ip
随着iOS应用项目复杂度的提升,一个中型团队往往需要维护多个模块或多个独立App。从早期的功能开发到后期的性能优化、日志调试、数据分析,如果没有一套清晰的流程和工具规范,调试环节很容易陷入混乱,甚至因信息不对称延误问题定位。我们团队在过去一年里迭代多个iOS业务模块,在实战中逐步构建了一套标准化的调试流程,以此为基础实现了性能可控、问题可回溯、信息可共享的目标。本文将分享我们如何从混乱中整理出调试
- SQL Server 进阶:递归 CTE+CASE WHEN 实现复杂树形统计(第二课)
AI、少年郎
java数据库开发语言sql递归树形递归
在《SQLServer函数实战:一条SQL替代3000行代码的计算逻辑》基础上,我们进一步拓展业务需求,实现更复杂的层级数据统计。本次将重点解决两个核心问题:一是统计每个部门(含所有下级部门)请假天数大于3天的记录数量;二是让上级部门的统计结果自动汇总所有下级部门数据,实现树形结构的递归统计。通过递归CTE、CASEWHEN函数与分组聚合的深度结合,完成从基础数据统计到层级化数据分析的跨越。一、业
- 筑牢医疗AI安全防线:四重防护体系全解析
Allen_Lyb
数智化教程(第二期)人工智能安全
一、引言:医疗AI发展中的安全困境在数字化浪潮席卷下,医疗领域正经历着一场由人工智能(AI)驱动的深刻变革。医疗AI凭借其强大的数据分析与处理能力,在疾病诊断、药物研发、健康管理等诸多环节展现出巨大潜力,成为推动医疗行业进步的关键力量。而这一切的背后,医疗数据作为AI发展的“燃料”,以及AI算力作为运行的“引擎”,起着不可或缺的核心作用。医疗数据涵盖了患者从基本信息、病史、症状描述到各种检查检验报
- 《从0到1搭建短剧广告APP:商业模式设计×技术架构×运营策略全解析》
ywyy6798
短剧推客系统小程序推客小程序短剧看广告APP短剧系统短剧看广告APP系统开发
引言:短剧+广告模式的市场机遇近年来,短剧行业呈现爆发式增长,用户对碎片化娱乐内容的需求激增。与此同时,广告变现模式在短视频、免费阅读等领域已得到充分验证。“看广告解锁剧情”的模式,结合了短剧的高粘性和广告变现的高效率,成为开发者、内容方和广告主三方共赢的新赛道。然而,这类APP的开发并非简单的“广告SDK+短剧播放器”组合,而是涉及商业模式设计、广告系统优化、用户体验平衡、数据分析和合规运营等多
- Python 爬虫实战:从图片网站抓取图片并进行特征提取(2025 最新版)
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言githubchrome数据库
一、引言在当今的数字时代,图像数据在各个领域中扮演着至关重要的角色。无论是计算机视觉、机器学习,还是数据分析,图像数据的获取和处理都是基础。然而,获取大量高质量的图像数据并非易事。幸运的是,互联网上充斥着丰富的图像资源,只需借助合适的工具和技术,我们就能高效地从中获取所需的图像数据。本文将详细介绍如何使用Python构建一个完整的爬虫系统,从图片网站抓取图像,并对其进行特征提取。我们将涵盖从网页分
- Python,Go开发数据流量分配查询APP
Geeker-2025
pythongolang
#数据流量分配查询应用我将设计一个基于Python和Go开发的数据流量分配查询应用,帮助用户监控和分析网络流量分配情况。##设计思路这个应用将实现以下核心功能:-实时监控网络流量分配情况-多维度流量数据分析(设备、应用、时间段)-流量分配策略设置与管理-异常流量告警系统-直观的数据可视化展示##技术架构```前端(Python+Streamlit)后端(Go)┌──────────────────
- 企业上网行为管理:零信任安全产品的对比分析
一、腾讯iOA零信任产品网站库丰富:内置2000+网站库,有效规范员工上网行为,规避风险网址。策略个性化:支持按部门、岗位定制上网策略,研发专注核心业务,市场获取行业资讯。场景适应性:灵活配置满足多业务场景需求,适应企业多样化管理要求。二、深信服零信任安全解决方案实时监控与记录:实时监控员工上网行为,记录访问网站、使用时间、流量等数据。异常行为发现:通过数据分析及时发现异常行为,如频繁访问可疑网站
- 数据分析与做菜的关系,makedown
过期的秋刀鱼!
数据分析数据挖掘数据分析小白markdown数据可视化powerbi数据分析流程
#数据分析就像做一道菜##1️⃣明确需求例子:今天想做**"番茄炒蛋"**✅对应分析:老板要看**"上个月哪些商品最赚钱"**##2️⃣拆解需求例子:做番茄炒蛋需要**番茄2个+鸡蛋3个+盐糖少许**(步骤:先炒蛋→再炒番茄→混合)✅对应分析:需要**销售表(含成本/售价)+商品名称表**→先算利润→再排名##3️⃣数据准备例子:**去菜市场买番茄、鸡蛋**✅对应分析:从财务系统**导出销售Exc
- 某连锁超市销售数据分析报告
共眠星河
信息可视化数据分析
目录第一章项目介绍...................................................................................................................2第二章项目规划....................................................................
- Matplotlib 完全指南:从入门到精通
老哥不老
pythonmatplotlib
前言Matplotlib是Python中最基础、最强大的数据可视化库之一。无论你是数据分析师、数据科学家还是研究人员,掌握Matplotlib都是必不可少的技能。本文将带你从零开始学习Matplotlib,帮助你掌握各种图表的绘制方法和高级技巧。目录Matplotlib简介安装与基础配置基础绘图常用图表类型图表样式与美化多子图布局高级技巧实战案例常见问题与解决方案总结与资源Matplotlib简介
- 【数据分析】Python+Tushare实现均线金叉死叉交易策略回测
虚拟现实旅人
数据分析python数据挖掘
【数据分析】Python+Tushare实现均线金叉死叉交易策略回测简介在本文中,我们将利用Python和Tushare数据接口,对贵州茅台(600519.SH)进行数据分析,并实现基于“双均线”策略的量化回测,完整评估该策略的收益效果。项目目标使用tushare包获取贵州茅台的历史行情数据。计算该股票历史数据的5日均线和30日均线。分析输出所有金叉日期和死叉日期。模拟实际买卖交易流程。1.数据获
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 低代码数字孪生智慧钢厂组态监控界面
图扑可视化
三维可视化数字孪生数据大屏组态监控智慧钢厂
2024年4月,中国钢铁工业协会发布了《钢铁行业数字化转型评估报告(2023年)》(以下简称《报告》)。《报告》指出,绝大部分钢铁企业建立了数字化转型相关管理组织和团队,并加强其规划落实,系统间的综合集成能力进一步加强。在研发、制造、服务全生命周期管控以及产业链协同等方面需继续深化,这也是现阶段钢铁企业数字化转型需重点建设的内容。钢铁行业作为典型的流程制造业,通过融合先进的信息技术和大数据分析,既
- 数字孪生:未来城市管理的革命性技术
大有数据可视化
信息可视化
一、数字孪生技术概述数字孪生技术是一种通过创建虚拟模型与物理实体之间实时交互的技术。它借助物联网、大数据、云计算、人工智能等前沿技术,实现对物理实体的精准映射与动态仿真。数字孪生的核心在于构建一个与物理世界相对应的虚拟模型,该模型能够实时反映物理实体的状态,并通过数据分析与模拟优化其性能。在城市管理领域,数字孪生技术为城市管理者提供了一种全新的视角和工具。城市是一个复杂的巨系统,涉及基础设施、交通
- Python大数据分析&人工智能教程 - Django-Celery异步处理(深入解析与实战案例)
AI_DL_CODE
python数据分析DjangoCelery异步处理Celery
文章目录1.概念介绍1.1Django框架概述1.2Celery异步任务队列1.3AMQP协议与消息路由2.环境搭建2.1安装Django和Celery2.2配置Redis作为消息代理3.Celery架构与工作原理3.1Celery组件介绍3.2任务生命周期3.3任务调度与执行3.3.1定时任务3.3.2异步任务调用3.3.3任务结果查询4.Django与Celery集成4.1创建Celery实例
- Python大数据分析&人工智能教程 - Django-RestFramework框架(深入解析+实操案例)
AI_DL_CODE
python数据分析djangoRestFramework框架
文章目录1.Django-RestFramework基础1.1Django-RestFramework概述1.2安装与配置1.3构建第一个API1.3.1定义模型1.3.2创建序列化器1.3.3定义视图1.3.4配置URL路由1.4进阶功能1.4.1权限控制1.4.2限流1.5实战案例1.5.1创建图书1.5.2查询图书1.5.3更新图书1.5.4删除图书2.序列化器(Serializers)2.
- Python 爬虫实战:抓取哔哩哔哩收藏夹视频(API 逆向 + 视频分类整理)
西攻城狮北
python爬虫音视频
引言哔哩哔哩(B站)作为国内知名的视频分享平台,拥有丰富多样的视频资源和活跃的用户社区。对于视频创作者、数据分析人员或爬虫学习者来说,抓取B站收藏夹中的视频数据,不仅能帮助我们更好地了解用户喜好和视频内容,还能为创作和研究提供有力支持。本文将深入浅出地讲解如何通过Python爬虫实现抓取哔哩哔哩收藏夹视频,并对其进行分类整理,涵盖从环境搭建、API逆向分析到数据处理与存储等关键步骤,旨在为读者提供
- 【Python学习】可视化图表-使用matplotlib绘制不同种类散点图
西攻城狮北
Python实用案例python学习matplotlib可视化图形
一、引言在数据可视化领域,散点图是一种极其强大的工具,它能够直观地展示变量之间的关系、数据分布的模式以及潜在的聚类情况等。通过散点图,我们可以轻松地发现数据中的异常值、相关性以及其他隐藏的特征。Python的matplotlib库提供了丰富而灵活的功能,可以帮助我们绘制出各种类型的散点图,以满足不同的数据分析和展示需求。本文将深入探讨如何使用matplotlib绘制多种类型的散点图,并提供详细的代
- Python 中的集合(Set)详解:从基础操作到实际应用
面朝大海,春不暖,花不开
Python基础python开发语言
文章大纲引言:集合在Python中的重要性在Python编程中,集合(Set)是一种极为重要的内置数据结构,它以无序性和元素唯一性为主要特点。集合中的每个元素都是独一无二的,这使得它在处理数据去重、成员检测以及数学运算(如并集、交集)时表现出色。无论是进行大规模数据分析,还是优化算法效率,集合都能提供高效的解决方案。例如,在处理用户ID列表时,集合可以快速去除重复项,确保数据准确性。此外,集合与字
- 电商数据分析--常见的数据采集工具及方法
2501_91048859
python爬虫数据采集AI爬虫
大家好,我是老张,一个在IT圈子里摸爬滚打了十几年的老程序员。今天我想和大家分享一下我在电商数据分析领域的一些实操经验,特别是关于数据采集工具和方法的使用心得。首先,让我们聊聊数据采集的重要性。在电商领域,数据就是金矿,而采集工具就是我们的挖掘机。没有好的工具,再丰富的矿藏也难以开采。今天,我主要想介绍几种我常用的数据采集工具,并分享一些实操中的小技巧。###1.火车采集器火车采集器是我早期使用的
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等深度科研
Yolo566Q
chatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等
xiao5kou4chang6kai4
人工智能深度学习机器学习rnn语言模型lstm深度学习机器学习人工智能DeepSeek
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模
asyxchenchong888
chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用
科研的力量
人工智能ChatGPTchatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- **基于Python的数据分析与机器学习实战教程****一、引言**随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,
2401_89451588
python数据分析机器学习
基于Python的数据分析与机器学习实战教程一、引言随着大数据时代的到来,数据处理和分析能力已经成为现代软件开发人员的必备技能之一。Python作为一种高效、简洁且功能丰富的编程语言,在数据分析领域得到了广泛的应用。本文将介绍如何使用Python进行数据分析,并结合机器学习算法实现数据驱动的应用。二、Python基础首先,我们需要掌握Python的基本语法和常用的库。Python的语法简洁易懂,上
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源