itertools是python内置的模块,使用简单且功能强大,这里尝试汇总整理下,并提供简单应用示例;如果还不能满足你的要求,欢迎加入补充。
1、Itertools.count(start=0, step=1)
创建一个迭代对象,生成从start开始的连续整数,步长为step。
如果省略了start则默认从0开始,步长默认为1
如果超过了sys.maxint,则会移除并且从-sys.maxint-1开始计数。
例:
from itertools import *
for i in izip(count(2,6), ['a', 'b', 'c']):
print i
输出为:
(2, 'a')
(8, 'b')
(14, 'c')
2、Itertools.cycle(iterable)
创建一个迭代对象,对于输入的iterable的元素反复执行循环操作,内部生成iterable中的元素的一个副本,这个副本用来返回循环中的重复项。
例:
from itertools import *
i = 0
for item in cycle(['a', 'b', 'c']):
i += 1
if i == 10:
break
print (i, item)
输出为:
(1, 'a')
(2, 'b')
(3, 'c')
(4, 'a')
(5, 'b')
(6, 'c')
(7, 'a')
(8, 'b')
(9, 'c')
3、Itertools.repeat(object[, times])
创建一个迭代器,重复生成object,如果没有设置times,则会无线生成对象。
例:
from itertools import *
for i in repeat('kivinsae', 5):
print I
输出为:
kivinsae
kivinsae
kivinsae
kivinsae
kivinsae
1、itertools.accumulate(*iterables)
这个函数简单来说就是一个累加器,不停对列表或者迭代器进行累加操作(这里指每项累加)。
例:
from itertools import *
x = itertools.accumulate(range(10))
print(list(x))
输出为:
[0, 1, 3, 6, 10, 15, 21, 28, 36, 45]
2、itertools.chain(*iterables)
把多个迭代器作为参数,但是只会返回单个迭代器。产生所有参数迭代器的内容,却好似来自于一个单一的序列。简单了讲就是连接多个【列表】或者【迭代器】。
例:
from itertools import *
for i in chain(['p','x','e'], ['scp', 'nmb', 'balenciaga']):
print I
输出为:
p
x
e
scp
nmb
balenciaga
3、itertools.compress(data,selectors)
具体来说compress提供了一个对于原始数据的筛选功能,具体条件可以设置的非常复杂,所以下面只列出相关的定义代码来解释。不过简单来理解,就是说按照真值表进行元素筛选而已。
实现过程:
def compress(data, selectors):
# compress('ABCDEF', [1,0,1,0,1,1]) --> A C E F
return (d for d, s in izip(data, selectors) if s)
例:
from itertools import compress
list(compress('ABCDEF', [1, 1, 0, 1, 0, 1]))
输出为:
['A', 'B', 'D', 'F']
4、itertools.dropwhile(predicate,iterable)
dropwhile作用是创建一个迭代器,只要是函数predicate(item)为True,则丢掉iterable中的项,但是如果predicate返回的是False,则生成iterable中的项和所有的后续项。
具体来说就是,在条件为False之后的第一次,就返回迭代器中剩余的所有项。在这个函数表达式里面iterable的值会按索引一个个作为predicate的参数进行计算。
简单来说其实就是按照真值函数丢弃掉列表和迭代器前面的元素。
例:
from itertools import *
def should_drop(x):
print 'Testing:', x
return (x<1)
for i in dropwhile(should_drop, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
print 'Yielding:', i
输出为:
Testing: -1
Testing: 0
Testing: 1
Yielding: 1
Yielding: 2
Yielding: 3
Yielding: 4
Yielding: 1
Yielding: -2
5、itertools.groupby(iterable[,key])
返回一个集合的迭代器,集合内是按照key进行分组后的值。
如果iterable在多次连续的迭代中生成了同一项,则会定义一个组,如果对这个函数应用一个分类列表,那么分组会定义这个列表中所有的唯一项,key是一个函数并应用于每一项。如果这个函数有返回值,则这个值会用于后续的项,而不是和该项本身进行比较。这个函数返回的迭代器生成元素(key,group),key是分组的键值,group是迭代器,从而生成组成这个组的所有项目。
具体来说实现过程和示例如下:
实现过程:
class groupby(object):
# [k for k, g in groupby('AAAABBBCCDAABBB')] --> A B C D A B
# [list(g) for k, g in groupby('AAAABBBCCD')] --> AAAA BBB CC D
def __init__(self, iterable, key=None):
if key is None:
key = lambda x: x
self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = object()
def __iter__(self):
return self
def next(self):
while self.currkey == self.tgtkey:
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))
def _grouper(self, tgtkey):
while self.currkey == tgtkey:
yield self.currvalue
self.currvalue = next(self.it) # Exit on StopIteration
self.currkey = self.keyfunc(self.currvalue)
例:
from itertools import *
a = ['aa', 'ab', 'abc', 'bcd', 'abcde']
for i, k in groupby(a, len):
print i, list(k)
输出为:
2 ['aa', 'ab']
3 ['abc', 'bcd']
5 ['abcde']
6、itertools.ifilter(predicate,iterable)
本函数返回一个迭代器,类似于针对于列表的函数filter(),但是只包括测试函数返回True时候的值。和dropwhile()作用不同。
函数创建一个迭代器,只生成predicate(iterable)为True的项,简单来说就是返回iterable中所有计算后为True的项。如果是非True则进行之后的其他操作。
例:
from itertools import *
def check_item(x):
print 'Testing:', x
return (x<1)
for i in ifilter(check_item, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
print 'Yielding:', i
输出为:
Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Testing: 2
Testing: 3
Testing: 4
Testing: 1
Testing: -2
Yielding: -2
7、itertools.ifilterfalse(predicate,iterable)
本函数和上面的ifilter一样,唯一的区别是只有当predicate(iterable)为False时候才进行predicate的输出。
例:
from itertools import *
def check_item(x):
print 'Testing:', x
return (x<1)
for i in ifilterfalse(check_item, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
print 'Yielding:', I
输出为:
Testing: -1
Testing: 0
Testing: 1
Yielding: 1
Testing: 2
Yielding: 2
Testing: 3
Yielding: 3
Testing: 4
Yielding: 4
Testing: 1
Yielding: 1
Testing: -2
8、itertools.islice(iterable,stop)
简单来说这个函数,就是对于一个迭代对象iterable,设定一个特定的切片/选取/截取规则,然后最后输出一个特定的新的迭代对象的过程。这个stop实际上代表一个三元数组,也就是start,stop,step。如果start省略,默认从索引0开始;如果step被省略,则默认步长为1;stop不能被省略。本质就是一个切片工具。
例:
from itertools import *
print 'Stop at 5:'
for i in islice(count(), 5):
print i
print 'Start at 5, Stop at 10:'
for i in islice(count(), 5, 10):
print i
print 'By tens to 100:'
for i in islice(count(), 0, 100, 10):
print I
输出为:
Stop at 5:
0
1
2
3
4
Start at 5, Stop at 10:
5
6
7
8
9
By tens to 100:
0
10
20
30
40
50
60
70
80
90
9、itertools.imap(function,*iterable)
本函数创建一个迭代器,作用函数为function1,function2,function3…,对应的变量来自迭代器iterable1,iterable2,iterable3…。然后返回一个(f1,f2,f3…)形式的元组。只要其中一个迭代器不再生成值,这个函数就会停止。所以要处理好None的情况,用一下替代输出之类的方法。
例:
from itertools import *
print 'Doubles:'
for i in imap(lambda x:2*x, xrange(5)):
print i
print 'Multiples:'
for i in imap(lambda x,y:(x, y, x*y), xrange(5), xrange(5,10)):
print '%d * %d = %d' % I
输出为:
Doubles:
0
2
4
6
8
Multiples:
0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36
10、itertools.starmap(function,iterable)
本函数创建一个函数,其中内调用的function(*item),item来自于iterable。只有当迭代对象iterable生成的项适合这个函数的调用形式的时候,starmap才会有效。
例:
from itertools import *
values = [(0, 5), (1, 6), (2, 7), (3, 8), (4, 9)]
for i in starmap(lambda x,y:(x, y, x*y), values):
print '%d * %d = %d' % I
输出为:
0 * 5 = 0
1 * 6 = 6
2 * 7 = 14
3 * 8 = 24
4 * 9 = 36
11、itertools.tee(iterable[,n=2])
这个函数会返回若干个基于某个原始输入的独立迭代器。类似于Linux系统上的tee指令。如果不特地制定n的话,函数会默认是2。tee括号里面最好使用标准输入,而不是原始迭代器。不然会在某些缓存过程中出现异常。
例:
from itertools import *
r = islice(count(), 5)
i1, i2 = tee(r)
for i in i1:
print 'i1:', i
for i in i2:
print 'i2:', I
输出为:
i1: 0
i1: 1
i1: 2
i1: 3
i1: 4
i2: 0
i2: 1
i2: 2
i2: 3
i2: 4
12、itertools.takewhile(predicate,iterable)
这个函数和dropwhile刚好相反,只要predicate计算后为False,迭代过程立刻停止。
例:
from itertools import *
def should_take(x):
print 'Testing:', x
return (x<2)
for i in takewhile(should_take, [ -1, 0, 1, 2, 3, 4, 1, -2 ]):
print 'Yielding:', I
输出为:
Testing: -1
Yielding: -1
Testing: 0
Yielding: 0
Testing: 1
Yielding: 1
Testing: 2
13、itertools.izip( *iterables)
这个函数返回一个合并多个迭代器,成为一个元组的迭代对象。类似于内置函数zip,但返回的是迭代对象而非列表。
创建一个迭代对象,生成元组(i1,i2,i3…)分别来自于i1,i2,i3…,只要提供的某个迭代器不在生成值,函数就会立刻停止。
例:
from itertools import *
for i in izip([1, 2, 3], ['a', 'b', 'c']):
print I
输出为:
(1, 'a')
(2, 'b')
(3, 'c')
14、itertools.izip_longest(*iterable[,fillvalue])
本函数和izip雷同,但是区别在于不会停止,会把所有输入的迭代对象全部耗尽为止,对于参数不匹配的项,会用None代替。非常容易理解。
例:
from itertools import *
for i in izip_longest([1, 2, 3], ['a', 'b']):
print I
输出为:
(1, 'a')
(2, 'b')
(3, None)
1、itertools.product(*iterable[,repeat])
这个工具就是产生多个列表或者迭代器的n维积。如果没有特别指定repeat默认为列表和迭代器的数量。
例:
import itertools
a = (1, 2, 3)
b = ('A', 'B', 'C')
c = itertools.product(a,b)
for elem in c:
print elem
输出为:
(1, 'A')
(1, 'B')
(1, 'C')
(2, 'A')
(2, 'B')
(2, 'C')
(3, 'A')
(3, 'B')
(3, 'C')
2、itertools.permutations(iterable[,r])
这个函数作用其实就是产生指定数目repeat的元素的所有排列,且顺序有关,但是遇到原列表或者迭代器有重复元素的现象的时候,也会对应的产生重复项。这个时候最好用groupby或者其他filter去一下重,如果有需要的话。
例:
import itertools
x = itertools.permutations(range(4), 3)
print(list(x))
输出为:
[(0, 1, 2),
(0, 1, 3),
(0, 2, 1),
(0, 2, 3),
(0, 3, 1),
(0, 3, 2),
(1, 0, 2),
(1, 0, 3),
(1, 2, 0),
(1, 2, 3),
(1, 3, 0),
(1, 3, 2),
(2, 0, 1),
(2, 0, 3),
(2, 1, 0),
(2, 1, 3),
(2, 3, 0),
(2, 3, 1),
(3, 0, 1),
(3, 0, 2),
(3, 1, 0),
(3, 1, 2),
(3, 2, 0),
(3, 2, 1)
]
3、itertools.combinations(iterable,r)
这个函数用来生成指定数目r的元素不重复的所有组合。注意和permutation的区分,以及这个组合是无序的,只考虑元素本身的unique性。
例:
import itertools
x = itertools.combinations(range(4), 3)
print(list(x))
输出为:
[(0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3)]
4、itertools.combinations_with_replacement(iterable,r)
这个函数用来生成指定数目r的元素可重复的所有组合。然而这个函数依然要保证元素组合的unique性。
例:
import itertools
x = itertools.combinations_with_replacement('ABC', 2)
print(list(x))
输出为:
[('A', 'A'),
('A', 'B'),
('A', 'C'),
('B', 'B'),
('B', 'C'),
('C', 'C’)
]