本文将介绍如何使用PyTorch保存模块和加载模型。
在PyTorch中,一个torch.nn.Module
模型的可训练参数(即权重与偏移项)保存在模型的参数(parameters),使用model.parameters()
获得)中。一个state_dict
就是一个简单的Python字典,将每层映射到其参数张量。PyTorch的模型文件以.pt
或.pth
为后缀。使用函数torch.save
保存模型,使用函数torch.load
加载模型。
PyTorch有两种保存与加载模型的方式,一种是保存整个模型(包括模型结构及参数值),另一种是只保存模型的参数值(即state_dict
)。
torch.save(model_object, './model.pth')
直接加载即可使用:
model = torch.load('./model.pth')
torch.save(model_object.state_dict(), './params.pth')
加载则要先从本地网络模块导入网络,然后再加载参数:
from models import Model
model = Model()
model.load_state_dict(torch.load('./params.pth'))
我们以文章PyTorch入门(二)搭建MLP模型实现分类任务中的二分类MLP模型为例,来演示如何在PyTorch中保存模型和加载代码。
只保存模型参数值的示例Python代码(save_model.py
)如下:
# -*- coding: utf-8 -*-
from numpy import vstack
from pandas import read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
import torch
from torch import Tensor
from torch.optim import SGD
from torch.utils.data import Dataset, DataLoader, random_split
from torch.nn import Linear, ReLU, Sigmoid, Module, BCELoss
from torch.nn.init import kaiming_uniform_, xavier_uniform_
# dataset definition
class CSVDataset(Dataset):
# load the dataset
def __init__(self, path):
# load the csv file as a dataframe
df = read_csv(path, header=None)
# store the inputs and outputs
self.X = df.values[:, :-1]
self.y = df.values[:, -1]
# ensure input data is floats
self.X = self.X.astype('float32')
# label encode target and ensure the values are floats
self.y = LabelEncoder().fit_transform(self.y)
self.y = self.y.astype('float32')
self.y = self.y.reshape((len(self.y), 1))
# number of rows in the dataset
def __len__(self):
return len(self.X)
# get a row at an index
def __getitem__(self, idx):
return [self.X[idx], self.y[idx]]
# get indexes for train and test rows
def get_splits(self, n_test=0.3):
# determine sizes
test_size = round(n_test * len(self.X))
train_size = len(self.X) - test_size
# calculate the split
return random_split(self, [train_size, test_size])
# model definition
class MLP(Module):
# define model elements
def __init__(self, n_inputs):
super(MLP, self).__init__()
# input to first hidden layer
self.hidden1 = Linear(n_inputs, 10)
kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')
self.act1 = ReLU()
# second hidden layer
self.hidden2 = Linear(10, 8)
kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
self.act2 = ReLU()
# third hidden layer and output
self.hidden3 = Linear(8, 1)
xavier_uniform_(self.hidden3.weight)
self.act3 = Sigmoid()
# forward propagate input
def forward(self, X):
# input to first hidden layer
X = self.hidden1(X)
X = self.act1(X)
# second hidden layer
X = self.hidden2(X)
X = self.act2(X)
# third hidden layer and output
X = self.hidden3(X)
X = self.act3(X)
return X
# prepare the dataset
def prepare_data(path):
# load the dataset
dataset = CSVDataset(path)
# calculate split
train, test = dataset.get_splits()
# prepare data loaders
train_dl = DataLoader(train, batch_size=32, shuffle=True)
test_dl = DataLoader(test, batch_size=1024, shuffle=False)
return train_dl, test_dl
# train the model
def train_model(train_dl, model):
# define the optimization
criterion = BCELoss()
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
# enumerate epochs
for epoch in range(100):
# enumerate mini batches
for i, (inputs, targets) in enumerate(train_dl):
# clear the gradients
optimizer.zero_grad()
# compute the model output
yhat = model(inputs)
# calculate loss
loss = criterion(yhat, targets)
# credit assignment
loss.backward()
print("epoch: {}, batch: {}, loss: {}".format(epoch, i, loss.data))
# update model weights
optimizer.step()
# evaluate the model
def evaluate_model(test_dl, model):
predictions, actuals = [], []
for i, (inputs, targets) in enumerate(test_dl):
# evaluate the model on the test set
yhat = model(inputs)
# retrieve numpy array
yhat = yhat.detach().numpy()
actual = targets.numpy()
actual = actual.reshape((len(actual), 1))
# round to class values
yhat = yhat.round()
# store
predictions.append(yhat)
actuals.append(actual)
predictions, actuals = vstack(predictions), vstack(actuals)
# calculate accuracy
acc = accuracy_score(actuals, predictions)
return acc
# make a class prediction for one row of data
def predict(row, model):
# convert row to data
row = Tensor([row])
# make prediction
yhat = model(row)
# retrieve numpy array
yhat = yhat.detach().numpy()
return yhat
if __name__ == '__main__':
# prepare the data
path = './data/ionosphere.csv'
train_dl, test_dl = prepare_data(path)
print(len(train_dl.dataset), len(test_dl.dataset))
# define the network
model = MLP(34)
print(model)
# train the model
train_model(train_dl, model)
torch.save(model.state_dict(), 'binary_classification.pth')
print(model.state_dict())
# evaluate the model
acc = evaluate_model(test_dl, model)
print('Accuracy: %.3f' % acc)
运行代码,会输出该MLP模型的参数值(state_dict
)如下:
OrderedDict([('hidden1.weight', tensor([[-4.3042e-02, -1.3315e-01, -3.5050e-01, -1.4949e-01, -1.6642e-01,
......), ('hidden1.bias', tensor([ 0.2563, -0.0024, -0.1276, 0.1943, -0.2728, -0.2992, 0.3130, 0.0245,
-0.0381, 0.4498])), ('hidden2.weight', tensor([[-0.5759, -0.9750, 1.0027, 0.5148, 0.6903, 0.3534, -1.0665, 0.1220,
-0.0757, 0.4448], ......), ('hidden2.bias', tensor([ 1.7468e-01, 5.9972e-02, -4.2997e-02, -2.2675e-01, 8.3250e-01,
-3.2392e-04, 3.9665e-01, -2.5674e-01])), ('hidden3.weight', tensor([[ 1.3292, -0.6698, -0.2412, 1.0923, -2.5248, 0.3479, -1.1331, -0.0240]])), ('hidden3.bias', tensor([-0.8218]))])
值得注意的是,state_dict
输出的格式为Python字典结构。保存为文件名称为binary_classification.pth。
接着我们加载该模型文件,并对新数据进行预测,示例代码(load_model.py
)如下:
# -*- coding: utf-8 -*-
import torch
from torch import Tensor
from save_model import MLP
model = MLP(34)
state_dict = torch.load('./binary_classification.pth')
model.load_state_dict(state_dict)
print(model)
# make a single prediction (expect class=1)
row = [1, 0, 0.99539, -0.05889, 0.85243, 0.02306, 0.83398, -0.37708, 1, 0.03760, 0.85243, -0.17755, 0.59755, -0.44945,
0.60536, -0.38223, 0.84356, -0.38542, 0.58212, -0.32192, 0.56971, -0.29674, 0.36946, -0.47357, 0.56811, -0.51171,
0.41078, -0.46168, 0.21266, -0.34090, 0.42267, -0.54487, 0.18641, -0.45300]
row = Tensor([row])
# make prediction
yhat = model(row)
# retrieve numpy array
yhat = yhat.detach().numpy()
print('Predicted: %.3f (class=%d)' % (yhat, yhat.round()))
如果我们想保存、加载整个模型及模型参数,则在模型保存代码(save_model.py
)中使用代码:
torch.save(model, 'binary_classification.pth')
加载模型部分代码如下:
# -*- coding: utf-8 -*-
import torch
from torch import Tensor
from save_model import MLP
model = torch.load('./binary_classification.pth')
# make a single prediction (expect class=1)
row = [1, 0, 0.99539, -0.05889, 0.85243, 0.02306, 0.83398, -0.37708, 1, 0.03760, 0.85243, -0.17755, 0.59755, -0.44945,
0.60536, -0.38223, 0.84356, -0.38542, 0.58212, -0.32192, 0.56971, -0.29674, 0.36946, -0.47357, 0.56811, -0.51171,
0.41078, -0.46168, 0.21266, -0.34090, 0.42267, -0.54487, 0.18641, -0.45300]
row = Tensor([row])
# make prediction
yhat = model(row)
# retrieve numpy array
yhat = yhat.detach().numpy()
print('Predicted: %.3f (class=%d)' % (yhat, yhat.round()))
需要注意的是,模型结构MLP类仍需在代码中(虽然后面代码中并没有用到MLP类),这样模型才能加载成功,否则会报模型加载失败。
本文简单介绍了如何在PyTorch中保存和加载模型。本文介绍的模型代码已开源,Github地址为:https://github.com/percent4/PyTorch_Learning。后续将持续介绍PyTorch内容,欢迎大家关注~