如果你的程序只使用了baidu-rpc的client或根本没有使用baidu-rpc,但你也想使用baidu-rpc的内置服务,只要在程序中启动一个空的server就行了,这种server我们称为dummy server。
Dummy server 可以用于原型设计和开发目的,作为简单的 http 服务器使用,多数场景用不上。
方式一(推荐方式)
通过gflags方式声明dummy server port,比如:–dummy_server_port=8888,需要重启服务才能生效,优先级低于方式二。
这种方式使用成本较低,优先级低于方式二的原因是:晚于方式二出现,因此需要兼容方式二。
方式二
在程序运行目录建立dummy_server.port文件,填入一个端口号(比如8888),不需要重启服务就能生效,优先级高于方式一。
你必须手动加入dummy server
#include
...
int main() {
...
baidu::rpc::Server dummy_server;
baidu::rpc::ServerOptions dummy_server_options;
dummy_server_options.num_threads = 0; // 不要改变寄主程序的线程数。
if (dummy_server.Start(8888/*port*/, &dummy_server_options) != 0) {
LOG(FATAL) << "Fail to start dummy server";
return -1;
}
...
}
r31803之后加入dummy server更容易了,只要一行:
#include
...
int main() {
...
baidu::rpc::StartDummyServerAt(8888/*port*/);
...
}
值得注意的是,我们在这里用了bvar::LatencyRecorder g_latency_recorder(“client”);来记录延迟,我们将在下一篇章详细讲述bvar的功能
#include
#include
#include
#include
#include
#include
#include "echo.pb.h"
#include
DEFINE_int32(thread_num, 4, "Number of threads to send requests");
DEFINE_bool(use_bthread, false, "Use bthread to send requests");
DEFINE_string(attachment, "foo", "Carry this along with requests");
DEFINE_string(connection_type, "", "Connection type. Available values: single, pooled, short");
DEFINE_string(server, "0.0.0.0:8000", "IP Address of server");
DEFINE_string(load_balancer, "", "The algorithm for load balancing");
DEFINE_int32(timeout_ms, 100, "RPC timeout in milliseconds");
DEFINE_int32(max_retry, 3, "Max retries(not including the first RPC)");
DEFINE_string(protocol, "baidu_std", "Protocol type. Defined in src/brpc/options.proto");
DEFINE_int32(depth, 0, "number of loop calls");
// Don't send too frequently in this example
DEFINE_int32(sleep_ms, 100, "milliseconds to sleep after each RPC");
DEFINE_int32(dummy_port, -1, "Launch dummy server at this port");
bvar::LatencyRecorder g_latency_recorder("client");
void* sender(void* arg) {
brpc::Channel* chan = (brpc::Channel*)arg;
// Normally, you should not call a Channel directly, but instead construct
// a stub Service wrapping it. stub can be shared by all threads as well.
example::EchoService_Stub stub(chan);
// Send a request and wait for the response every 1 second.
int log_id = 0;
while (!brpc::IsAskedToQuit()) {
// We will receive response synchronously, safe to put variables
// on stack.
example::EchoRequest request;
example::EchoResponse response;
brpc::Controller cntl;
request.set_message("hello world");
if (FLAGS_depth > 0) {
request.set_depth(FLAGS_depth);
}
cntl.set_log_id(log_id ++); // set by user
// Set attachment which is wired to network directly instead of
// being serialized into protobuf messages.
cntl.request_attachment().append(FLAGS_attachment);
// Because `done'(last parameter) is NULL, this function waits until
// the response comes back or error occurs(including timedout).
stub.Echo(&cntl, &request, &response, NULL);
if (cntl.Failed()) {
//LOG_EVERY_SECOND(WARNING) << "Fail to send EchoRequest, " << cntl.ErrorText();
} else {
g_latency_recorder << cntl.latency_us();
}
if (FLAGS_sleep_ms != 0) {
bthread_usleep(FLAGS_sleep_ms * 1000L);
}
}
return NULL;
}
int main(int argc, char* argv[]) {
// Parse gflags. We recommend you to use gflags as well.
GFLAGS_NS::SetUsageMessage("Send EchoRequest to server every second");
GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);
// A Channel represents a communication line to a Server. Notice that
// Channel is thread-safe and can be shared by all threads in your program.
brpc::Channel channel;
brpc::ChannelOptions options;
options.protocol = FLAGS_protocol;
options.connection_type = FLAGS_connection_type;
options.timeout_ms = FLAGS_timeout_ms/*milliseconds*/;
options.max_retry = FLAGS_max_retry;
// Initialize the channel, NULL means using default options.
// options, see `brpc/channel.h'.
if (channel.Init(FLAGS_server.c_str(), FLAGS_load_balancer.c_str(), &options) != 0) {
LOG(ERROR) << "Fail to initialize channel";
return -1;
}
std::vector<bthread_t> bids;
std::vector<pthread_t> pids;
if (!FLAGS_use_bthread) {
pids.resize(FLAGS_thread_num);
for (int i = 0; i < FLAGS_thread_num; ++i) {
if (pthread_create(&pids[i], NULL, sender, &channel) != 0) {
LOG(ERROR) << "Fail to create pthread";
return -1;
}
}
} else {
bids.resize(FLAGS_thread_num);
for (int i = 0; i < FLAGS_thread_num; ++i) {
if (bthread_start_background(
&bids[i], NULL, sender, &channel) != 0) {
LOG(ERROR) << "Fail to create bthread";
return -1;
}
}
}
if (FLAGS_dummy_port >= 0) {
brpc::StartDummyServerAt(FLAGS_dummy_port);
}
while (!brpc::IsAskedToQuit()) {
sleep(1);
LOG(INFO) << "Sending EchoRequest at qps=" << g_latency_recorder.qps(1)
<< " latency=" << g_latency_recorder.latency(1);
}
LOG(INFO) << "EchoClient is going to quit";
for (int i = 0; i < FLAGS_thread_num; ++i) {
if (!FLAGS_use_bthread) {
pthread_join(pids[i], NULL);
} else {
bthread_join(bids[i], NULL);
}
}
return 0;
}
主要是用来,就是可以在保持客户端代码不变的情况下,将服务器从一个分区方式更改为另一个分区,这样可以实现服务器之间的无缝切换,提高了系统的可用性和稳定性。具体实例代码如下,由于工作中没用到,大概记录下,后续用到再来补充细节:
#include
#include
#include
#include
#include
#include
#include
#include
#include "echo.pb.h"
DEFINE_int32(thread_num, 50, "Number of threads to send requests");
DEFINE_bool(use_bthread, false, "Use bthread to send requests");
DEFINE_int32(attachment_size, 0, "Carry so many byte attachment along with requests");
DEFINE_int32(request_size, 16, "Bytes of each request");
DEFINE_string(connection_type, "", "Connection type. Available values: single, pooled, short");
DEFINE_string(protocol, "baidu_std", "Protocol type. Defined in src/brpc/options.proto");
DEFINE_string(server, "file://server_list", "Mapping to servers");
DEFINE_string(load_balancer, "rr", "Name of load balancer");
DEFINE_int32(timeout_ms, 100, "RPC timeout in milliseconds");
DEFINE_int32(max_retry, 3, "Max retries(not including the first RPC)");
DEFINE_bool(dont_fail, false, "Print fatal when some call failed");
std::string g_request;
std::string g_attachment;
pthread_mutex_t g_latency_mutex = PTHREAD_MUTEX_INITIALIZER;
struct BAIDU_CACHELINE_ALIGNMENT SenderInfo {
size_t nsuccess;
int64_t latency_sum;
};
std::deque<SenderInfo> g_sender_info;
static void* sender(void* arg) {
// Normally, you should not call a Channel directly, but instead construct
// a stub Service wrapping it. stub can be shared by all threads as well.
example::EchoService_Stub stub(static_cast<google::protobuf::RpcChannel*>(arg));
SenderInfo* info = NULL;
{
BAIDU_SCOPED_LOCK(g_latency_mutex);
g_sender_info.push_back(SenderInfo());
info = &g_sender_info.back();
}
int log_id = 0;
while (!brpc::IsAskedToQuit()) {
// We will receive response synchronously, safe to put variables
// on stack.
example::EchoRequest request;
example::EchoResponse response;
brpc::Controller cntl;
request.set_message(g_request);
cntl.set_log_id(log_id++); // set by user
if (!g_attachment.empty()) {
// Set attachment which is wired to network directly instead of
// being serialized into protobuf messages.
cntl.request_attachment().append(g_attachment);
}
// Because `done'(last parameter) is NULL, this function waits until
// the response comes back or error occurs(including timedout).
stub.Echo(&cntl, &request, &response, NULL);
if (!cntl.Failed()) {
info->latency_sum += cntl.latency_us();
++info->nsuccess;
} else {
CHECK(brpc::IsAskedToQuit() || !FLAGS_dont_fail)
<< "error=" << cntl.ErrorText() << " latency=" << cntl.latency_us();
// We can't connect to the server, sleep a while. Notice that this
// is a specific sleeping to prevent this thread from spinning too
// fast. You should continue the business logic in a production
// server rather than sleeping.
bthread_usleep(50000);
}
}
return NULL;
}
class MyPartitionParser : public brpc::PartitionParser {
public:
bool ParseFromTag(const std::string& tag, brpc::Partition* out) {
// "N/M" : #N partition of M partitions.
size_t pos = tag.find_first_of('/');
if (pos == std::string::npos) {
LOG(ERROR) << "Invalid tag=" << tag;
return false;
}
char* endptr = NULL;
out->index = strtol(tag.c_str(), &endptr, 10);
if (endptr != tag.data() + pos) {
LOG(ERROR) << "Invalid index=" << butil::StringPiece(tag.data(), pos);
return false;
}
out->num_partition_kinds = strtol(tag.c_str() + pos + 1, &endptr, 10);
if (endptr != tag.c_str() + tag.size()) {
LOG(ERROR) << "Invalid num=" << tag.data() + pos + 1;
return false;
}
return true;
}
};
int main(int argc, char* argv[]) {
// Parse gflags. We recommend you to use gflags as well.
GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);
// A Channel represents a communication line to a Server. Notice that
// Channel is thread-safe and can be shared by all threads in your program.
brpc::DynamicPartitionChannel channel;
brpc::PartitionChannelOptions options;
options.protocol = FLAGS_protocol;
options.connection_type = FLAGS_connection_type;
options.succeed_without_server = true;
options.fail_limit = 1;
options.timeout_ms = FLAGS_timeout_ms/*milliseconds*/;
options.max_retry = FLAGS_max_retry;
if (channel.Init(new MyPartitionParser(),
FLAGS_server.c_str(), FLAGS_load_balancer.c_str(),
&options) != 0) {
LOG(ERROR) << "Fail to init channel";
return -1;
}
if (FLAGS_attachment_size > 0) {
g_attachment.resize(FLAGS_attachment_size, 'a');
}
if (FLAGS_request_size <= 0) {
LOG(ERROR) << "Bad request_size=" << FLAGS_request_size;
return -1;
}
g_request.resize(FLAGS_request_size, 'r');
std::vector<bthread_t> bids;
std::vector<pthread_t> pids;
if (!FLAGS_use_bthread) {
pids.resize(FLAGS_thread_num);
for (int i = 0; i < FLAGS_thread_num; ++i) {
if (pthread_create(&pids[i], NULL, sender, &channel) != 0) {
LOG(ERROR) << "Fail to create pthread";
return -1;
}
}
} else {
bids.resize(FLAGS_thread_num);
for (int i = 0; i < FLAGS_thread_num; ++i) {
if (bthread_start_background(
&bids[i], NULL, sender, &channel) != 0) {
LOG(ERROR) << "Fail to create bthread";
return -1;
}
}
}
int64_t last_counter = 0;
int64_t last_latency_sum = 0;
std::vector<size_t> last_nsuccess(FLAGS_thread_num);
while (!brpc::IsAskedToQuit()) {
sleep(1);
int64_t latency_sum = 0;
int64_t nsuccess = 0;
pthread_mutex_lock(&g_latency_mutex);
CHECK_EQ(g_sender_info.size(), (size_t)FLAGS_thread_num);
for (size_t i = 0; i < g_sender_info.size(); ++i) {
const SenderInfo& info = g_sender_info[i];
latency_sum += info.latency_sum;
nsuccess += info.nsuccess;
if (FLAGS_dont_fail) {
CHECK(info.nsuccess > last_nsuccess[i]) << "i=" << i;
}
last_nsuccess[i] = info.nsuccess;
}
pthread_mutex_unlock(&g_latency_mutex);
const int64_t avg_latency = (latency_sum - last_latency_sum) /
std::max(nsuccess - last_counter, (int64_t)1);
LOG(INFO) << "Sending EchoRequest at qps=" << nsuccess - last_counter
<< " latency=" << avg_latency;
last_counter = nsuccess;
last_latency_sum = latency_sum;
}
LOG(INFO) << "EchoClient is going to quit";
for (int i = 0; i < FLAGS_thread_num; ++i) {
if (!FLAGS_use_bthread) {
pthread_join(pids[i], NULL);
} else {
bthread_join(bids[i], NULL);
}
}
return 0;
}
0.0.0.0:8004 0/3
0.0.0.0:8004 1/3
0.0.0.0:8004 2/3
# 0.0.0.0:8008 0/3
0.0.0.0:8005 0/4
0.0.0.0:8005 1/4
0.0.0.0:8005 2/4
0.0.0.0:8005 3/4
0.0.0.0:8006 0/4
0.0.0.0:8006 1/4
0.0.0.0:8006 2/4
0.0.0.0:8006 3/4
DEFINE_bool(echo_attachment, true, "Echo attachment as well");
DEFINE_int32(port, 8004, "TCP Port of this server");
DEFINE_int32(idle_timeout_s, -1, "Connection will be closed if there is no "
"read/write operations during the last `idle_timeout_s'");
DEFINE_int32(logoff_ms, 2000, "Maximum duration of server's LOGOFF state "
"(waiting for client to close connection before server stops)");
DEFINE_int32(max_concurrency, 0, "Limit of request processing in parallel");
DEFINE_int32(server_num, 1, "Number of servers");
DEFINE_string(sleep_us, "", "Sleep so many microseconds before responding");
DEFINE_bool(spin, false, "spin rather than sleep");
DEFINE_double(exception_ratio, 0.1, "Percentage of irregular latencies");
DEFINE_double(min_ratio, 0.2, "min_sleep / sleep_us");
DEFINE_double(max_ratio, 10, "max_sleep / sleep_us");
// Your implementation of example::EchoService
class EchoServiceImpl : public example::EchoService {
public:
EchoServiceImpl() : _index(0) {}
virtual ~EchoServiceImpl() {};
void set_index(size_t index, int64_t sleep_us) {
_index = index;
_sleep_us = sleep_us;
}
virtual void Echo(google::protobuf::RpcController* cntl_base,
const example::EchoRequest* request,
example::EchoResponse* response,
google::protobuf::Closure* done) {
brpc::ClosureGuard done_guard(done);
brpc::Controller* cntl =
static_cast<brpc::Controller*>(cntl_base);
if (_sleep_us > 0) {
double delay = _sleep_us;
const double a = FLAGS_exception_ratio * 0.5;
if (a >= 0.0001) {
double x = butil::RandDouble();
if (x < a) {
const double min_sleep_us = FLAGS_min_ratio * _sleep_us;
delay = min_sleep_us + (_sleep_us - min_sleep_us) * x / a;
} else if (x + a > 1) {
const double max_sleep_us = FLAGS_max_ratio * _sleep_us;
delay = _sleep_us + (max_sleep_us - _sleep_us) * (x + a - 1) / a;
}
}
if (FLAGS_spin) {
int64_t end_time = butil::gettimeofday_us() + (int64_t)delay;
while (butil::gettimeofday_us() < end_time) {}
} else {
bthread_usleep((int64_t)delay);
}
}
// Echo request and its attachment
response->set_message(request->message());
if (FLAGS_echo_attachment) {
cntl->response_attachment().append(cntl->request_attachment());
}
_nreq << 1;
}
size_t num_requests() const { return _nreq.get_value(); }
private:
size_t _index;
int64_t _sleep_us;
bvar::Adder<size_t> _nreq;
};
int main(int argc, char* argv[]) {
// Parse gflags. We recommend you to use gflags as well.
GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_server_num <= 0) {
LOG(ERROR) << "server_num must be positive";
return -1;
}
// We need multiple servers in this example.
brpc::Server* servers = new brpc::Server[FLAGS_server_num];
// For more options see `brpc/server.h'.
brpc::ServerOptions options;
options.idle_timeout_sec = FLAGS_idle_timeout_s;
options.max_concurrency = FLAGS_max_concurrency;
butil::StringSplitter sp(FLAGS_sleep_us.c_str(), ',');
std::vector<int64_t> sleep_list;
for (; sp; ++sp) {
sleep_list.push_back(strtoll(sp.field(), NULL, 10));
}
if (sleep_list.empty()) {
sleep_list.push_back(0);
}
// Instance of your services.
EchoServiceImpl* echo_service_impls = new EchoServiceImpl[FLAGS_server_num];
// Add the service into servers. Notice the second parameter, because the
// service is put on stack, we don't want server to delete it, otherwise
// use brpc::SERVER_OWNS_SERVICE.
for (int i = 0; i < FLAGS_server_num; ++i) {
int64_t sleep_us = sleep_list[(size_t)i < sleep_list.size() ? i : (sleep_list.size() - 1)];
echo_service_impls[i].set_index(i, sleep_us);
// will be shown on /version page
servers[i].set_version(butil::string_printf(
"example/dynamic_partition_echo_c++[%d]", i));
if (servers[i].AddService(&echo_service_impls[i],
brpc::SERVER_DOESNT_OWN_SERVICE) != 0) {
LOG(ERROR) << "Fail to add service";
return -1;
}
// Start the server.
int port = FLAGS_port + i;
if (servers[i].Start(port, &options) != 0) {
LOG(ERROR) << "Fail to start EchoServer";
return -1;
}
}
// Service logic are running in separate worker threads, for main thread,
// we don't have much to do, just spinning.
std::vector<size_t> last_num_requests(FLAGS_server_num);
while (!brpc::IsAskedToQuit()) {
sleep(1);
size_t cur_total = 0;
for (int i = 0; i < FLAGS_server_num; ++i) {
const size_t current_num_requests =
echo_service_impls[i].num_requests();
size_t diff = current_num_requests - last_num_requests[i];
cur_total += diff;
last_num_requests[i] = current_num_requests;
LOG(INFO) << "S[" << i << "]=" << diff << ' ' << noflush;
}
LOG(INFO) << "[total=" << cur_total << ']';
}
// Don't forget to stop and join the server otherwise still-running
// worker threads may crash your program. Clients will have/ at most
// `FLAGS_logoff_ms' to close their connections. If some connections
// still remains after `FLAGS_logoff_ms', they will be closed by force.
for (int i = 0; i < FLAGS_server_num; ++i) {
servers[i].Stop(FLAGS_logoff_ms);
}
for (int i = 0; i < FLAGS_server_num; ++i) {
servers[i].Join();
}
delete [] servers;
delete [] echo_service_impls;
return 0;
}