【brpc学习实践七】dummy server、DynamicPartitionChannel

dummy server

如果你的程序只使用了baidu-rpc的client或根本没有使用baidu-rpc,但你也想使用baidu-rpc的内置服务,只要在程序中启动一个空的server就行了,这种server我们称为dummy server。
Dummy server 可以用于原型设计和开发目的,作为简单的 http 服务器使用,多数场景用不上。

brpc怎么开启dummy server

使用brpc的client

方式一(推荐方式)
通过gflags方式声明dummy server port,比如:–dummy_server_port=8888,需要重启服务才能生效,优先级低于方式二。
这种方式使用成本较低,优先级低于方式二的原因是:晚于方式二出现,因此需要兼容方式二。
方式二
在程序运行目录建立dummy_server.port文件,填入一个端口号(比如8888),不需要重启服务就能生效,优先级高于方式一。

没有使用baidu-rpc的client

你必须手动加入dummy server

#include 
 
...
 
int main() {
    ... 
    baidu::rpc::Server dummy_server;
    baidu::rpc::ServerOptions dummy_server_options;
    dummy_server_options.num_threads = 0;  // 不要改变寄主程序的线程数。
    if (dummy_server.Start(8888/*port*/, &dummy_server_options) != 0) {
        LOG(FATAL) << "Fail to start dummy server";
        return -1; 
    }
    ...
}

r31803之后加入dummy server更容易了,只要一行:

#include 
 
...
 
int main() {
    ... 
    baidu::rpc::StartDummyServerAt(8888/*port*/);
    ...
}

使用brpc客户端的dummy示例

值得注意的是,我们在这里用了bvar::LatencyRecorder g_latency_recorder(“client”);来记录延迟,我们将在下一篇章详细讲述bvar的功能

#include 
#include 
#include 
#include 
#include 
#include 
#include "echo.pb.h"
#include 

DEFINE_int32(thread_num, 4, "Number of threads to send requests");
DEFINE_bool(use_bthread, false, "Use bthread to send requests");
DEFINE_string(attachment, "foo", "Carry this along with requests");
DEFINE_string(connection_type, "", "Connection type. Available values: single, pooled, short");
DEFINE_string(server, "0.0.0.0:8000", "IP Address of server");
DEFINE_string(load_balancer, "", "The algorithm for load balancing");
DEFINE_int32(timeout_ms, 100, "RPC timeout in milliseconds");
DEFINE_int32(max_retry, 3, "Max retries(not including the first RPC)"); 
DEFINE_string(protocol, "baidu_std", "Protocol type. Defined in src/brpc/options.proto");
DEFINE_int32(depth, 0, "number of loop calls");
// Don't send too frequently in this example
DEFINE_int32(sleep_ms, 100, "milliseconds to sleep after each RPC");
DEFINE_int32(dummy_port, -1, "Launch dummy server at this port");

bvar::LatencyRecorder g_latency_recorder("client");

void* sender(void* arg) {
    brpc::Channel* chan = (brpc::Channel*)arg;
    // Normally, you should not call a Channel directly, but instead construct
    // a stub Service wrapping it. stub can be shared by all threads as well.
    example::EchoService_Stub stub(chan);

    // Send a request and wait for the response every 1 second.
    int log_id = 0;
    while (!brpc::IsAskedToQuit()) {
        // We will receive response synchronously, safe to put variables
        // on stack.
        example::EchoRequest request;
        example::EchoResponse response;
        brpc::Controller cntl;

        request.set_message("hello world");
        if (FLAGS_depth > 0) {
            request.set_depth(FLAGS_depth);
        }

        cntl.set_log_id(log_id ++);  // set by user
        // Set attachment which is wired to network directly instead of 
        // being serialized into protobuf messages.
        cntl.request_attachment().append(FLAGS_attachment);

        // Because `done'(last parameter) is NULL, this function waits until
        // the response comes back or error occurs(including timedout).
        stub.Echo(&cntl, &request, &response, NULL);
        if (cntl.Failed()) {
            //LOG_EVERY_SECOND(WARNING) << "Fail to send EchoRequest, " << cntl.ErrorText();
        } else {
            g_latency_recorder << cntl.latency_us();
        }
        if (FLAGS_sleep_ms != 0) {
            bthread_usleep(FLAGS_sleep_ms * 1000L);
        }
    }
    return NULL;
}

int main(int argc, char* argv[]) {
    // Parse gflags. We recommend you to use gflags as well.
    GFLAGS_NS::SetUsageMessage("Send EchoRequest to server every second");
    GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);

    // A Channel represents a communication line to a Server. Notice that 
    // Channel is thread-safe and can be shared by all threads in your program.
    brpc::Channel channel;
    brpc::ChannelOptions options;
    options.protocol = FLAGS_protocol;
    options.connection_type = FLAGS_connection_type;
    options.timeout_ms = FLAGS_timeout_ms/*milliseconds*/;
    options.max_retry = FLAGS_max_retry;
    
    // Initialize the channel, NULL means using default options. 
    // options, see `brpc/channel.h'.
    if (channel.Init(FLAGS_server.c_str(), FLAGS_load_balancer.c_str(), &options) != 0) {
        LOG(ERROR) << "Fail to initialize channel";
        return -1;
    }

    std::vector<bthread_t> bids;
    std::vector<pthread_t> pids;
    if (!FLAGS_use_bthread) {
        pids.resize(FLAGS_thread_num);
        for (int i = 0; i < FLAGS_thread_num; ++i) {
            if (pthread_create(&pids[i], NULL, sender, &channel) != 0) {
                LOG(ERROR) << "Fail to create pthread";
                return -1;
            }
        }
    } else {
        bids.resize(FLAGS_thread_num);
        for (int i = 0; i < FLAGS_thread_num; ++i) {
            if (bthread_start_background(
                    &bids[i], NULL, sender, &channel) != 0) {
                LOG(ERROR) << "Fail to create bthread";
                return -1;
            }
        }
    }

    if (FLAGS_dummy_port >= 0) {
        brpc::StartDummyServerAt(FLAGS_dummy_port);
    }

    while (!brpc::IsAskedToQuit()) {
        sleep(1);
        LOG(INFO) << "Sending EchoRequest at qps=" << g_latency_recorder.qps(1)
                  << " latency=" << g_latency_recorder.latency(1);
    }

    LOG(INFO) << "EchoClient is going to quit";
    for (int i = 0; i < FLAGS_thread_num; ++i) {
        if (!FLAGS_use_bthread) {
            pthread_join(pids[i], NULL);
        } else {
            bthread_join(bids[i], NULL);
        }
    }
    return 0;
}

DynamicPartitionChannel

主要是用来,就是可以在保持客户端代码不变的情况下,将服务器从一个分区方式更改为另一个分区,这样可以实现服务器之间的无缝切换,提高了系统的可用性和稳定性。具体实例代码如下,由于工作中没用到,大概记录下,后续用到再来补充细节:

client示例:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "echo.pb.h"

DEFINE_int32(thread_num, 50, "Number of threads to send requests");
DEFINE_bool(use_bthread, false, "Use bthread to send requests");
DEFINE_int32(attachment_size, 0, "Carry so many byte attachment along with requests");
DEFINE_int32(request_size, 16, "Bytes of each request");
DEFINE_string(connection_type, "", "Connection type. Available values: single, pooled, short");
DEFINE_string(protocol, "baidu_std", "Protocol type. Defined in src/brpc/options.proto");
DEFINE_string(server, "file://server_list", "Mapping to servers");
DEFINE_string(load_balancer, "rr", "Name of load balancer");
DEFINE_int32(timeout_ms, 100, "RPC timeout in milliseconds");
DEFINE_int32(max_retry, 3, "Max retries(not including the first RPC)"); 
DEFINE_bool(dont_fail, false, "Print fatal when some call failed");

std::string g_request;
std::string g_attachment;
pthread_mutex_t g_latency_mutex = PTHREAD_MUTEX_INITIALIZER;
struct BAIDU_CACHELINE_ALIGNMENT SenderInfo {
    size_t nsuccess;
    int64_t latency_sum;
};
std::deque<SenderInfo> g_sender_info;

static void* sender(void* arg) {
    // Normally, you should not call a Channel directly, but instead construct
    // a stub Service wrapping it. stub can be shared by all threads as well.
    example::EchoService_Stub stub(static_cast<google::protobuf::RpcChannel*>(arg));

    SenderInfo* info = NULL;
    {
        BAIDU_SCOPED_LOCK(g_latency_mutex);
        g_sender_info.push_back(SenderInfo());
        info = &g_sender_info.back();
    }

    int log_id = 0;
    while (!brpc::IsAskedToQuit()) {
        // We will receive response synchronously, safe to put variables
        // on stack.
        example::EchoRequest request;
        example::EchoResponse response;
        brpc::Controller cntl;

        request.set_message(g_request);
        cntl.set_log_id(log_id++);  // set by user
        if (!g_attachment.empty()) {
            // Set attachment which is wired to network directly instead of 
            // being serialized into protobuf messages.
            cntl.request_attachment().append(g_attachment);
        }

        // Because `done'(last parameter) is NULL, this function waits until
        // the response comes back or error occurs(including timedout).
        stub.Echo(&cntl, &request, &response, NULL);
        if (!cntl.Failed()) {
            info->latency_sum += cntl.latency_us();
            ++info->nsuccess;
        } else {
            CHECK(brpc::IsAskedToQuit() || !FLAGS_dont_fail)
                << "error=" << cntl.ErrorText() << " latency=" << cntl.latency_us();
            // We can't connect to the server, sleep a while. Notice that this
            // is a specific sleeping to prevent this thread from spinning too
            // fast. You should continue the business logic in a production 
            // server rather than sleeping.
            bthread_usleep(50000);
        }
    }
    return NULL;
}

class MyPartitionParser : public brpc::PartitionParser {
public:
    bool ParseFromTag(const std::string& tag, brpc::Partition* out) {
        // "N/M" : #N partition of M partitions.
        size_t pos = tag.find_first_of('/');
        if (pos == std::string::npos) {
            LOG(ERROR) << "Invalid tag=" << tag;
            return false;
        }
        char* endptr = NULL;
        out->index = strtol(tag.c_str(), &endptr, 10);
        if (endptr != tag.data() + pos) {
            LOG(ERROR) << "Invalid index=" << butil::StringPiece(tag.data(), pos);
            return false;
        }
        out->num_partition_kinds = strtol(tag.c_str() + pos + 1, &endptr, 10);
        if (endptr != tag.c_str() + tag.size()) {
            LOG(ERROR) << "Invalid num=" << tag.data() + pos + 1;
            return false;
        }
        return true;
    }
};


int main(int argc, char* argv[]) {
    // Parse gflags. We recommend you to use gflags as well.
    GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);

    // A Channel represents a communication line to a Server. Notice that 
    // Channel is thread-safe and can be shared by all threads in your program.
    brpc::DynamicPartitionChannel channel;

    brpc::PartitionChannelOptions options;
    options.protocol = FLAGS_protocol;
    options.connection_type = FLAGS_connection_type;
    options.succeed_without_server = true;
    options.fail_limit = 1;
    options.timeout_ms = FLAGS_timeout_ms/*milliseconds*/;
    options.max_retry = FLAGS_max_retry;

    if (channel.Init(new MyPartitionParser(),
                     FLAGS_server.c_str(), FLAGS_load_balancer.c_str(),
                     &options) != 0) {
        LOG(ERROR) << "Fail to init channel";
        return -1;
    }
    if (FLAGS_attachment_size > 0) {
        g_attachment.resize(FLAGS_attachment_size, 'a');
    }
    if (FLAGS_request_size <= 0) {
        LOG(ERROR) << "Bad request_size=" << FLAGS_request_size;
        return -1;
    }
    g_request.resize(FLAGS_request_size, 'r');

    std::vector<bthread_t> bids;
    std::vector<pthread_t> pids;
    if (!FLAGS_use_bthread) {
        pids.resize(FLAGS_thread_num);
        for (int i = 0; i < FLAGS_thread_num; ++i) {
            if (pthread_create(&pids[i], NULL, sender, &channel) != 0) {
                LOG(ERROR) << "Fail to create pthread";
                return -1;
            }
        }
    } else {
        bids.resize(FLAGS_thread_num);
        for (int i = 0; i < FLAGS_thread_num; ++i) {
            if (bthread_start_background(
                    &bids[i], NULL, sender, &channel) != 0) {
                LOG(ERROR) << "Fail to create bthread";
                return -1;
            }
        }
    }

    int64_t last_counter = 0;
    int64_t last_latency_sum = 0;
    std::vector<size_t> last_nsuccess(FLAGS_thread_num);
    while (!brpc::IsAskedToQuit()) {
        sleep(1);
        int64_t latency_sum = 0;
        int64_t nsuccess = 0;
        pthread_mutex_lock(&g_latency_mutex);
        CHECK_EQ(g_sender_info.size(), (size_t)FLAGS_thread_num);
        for (size_t i = 0; i < g_sender_info.size(); ++i) {
            const SenderInfo& info = g_sender_info[i];
            latency_sum += info.latency_sum;
            nsuccess += info.nsuccess;
            if (FLAGS_dont_fail) {
                CHECK(info.nsuccess > last_nsuccess[i]) << "i=" << i;
            }
            last_nsuccess[i] = info.nsuccess;
        }
        pthread_mutex_unlock(&g_latency_mutex);

        const int64_t avg_latency = (latency_sum - last_latency_sum) /
            std::max(nsuccess - last_counter, (int64_t)1);
        LOG(INFO) << "Sending EchoRequest at qps=" << nsuccess - last_counter
                  << " latency=" << avg_latency;
        last_counter = nsuccess;
        last_latency_sum = latency_sum;
    }

    LOG(INFO) << "EchoClient is going to quit";
    for (int i = 0; i < FLAGS_thread_num; ++i) {
        if (!FLAGS_use_bthread) {
            pthread_join(pids[i], NULL);
        } else {
            bthread_join(bids[i], NULL);
        }
    }

    return 0;
}

server分区配置示例


 0.0.0.0:8004  0/3
 0.0.0.0:8004  1/3     
 0.0.0.0:8004  2/3
# 0.0.0.0:8008 0/3


 0.0.0.0:8005  0/4     
 0.0.0.0:8005  1/4     
 0.0.0.0:8005  2/4     
 0.0.0.0:8005  3/4     

 0.0.0.0:8006 0/4
 0.0.0.0:8006 1/4
 0.0.0.0:8006 2/4
 0.0.0.0:8006 3/4

server端示例

DEFINE_bool(echo_attachment, true, "Echo attachment as well");
DEFINE_int32(port, 8004, "TCP Port of this server");
DEFINE_int32(idle_timeout_s, -1, "Connection will be closed if there is no "
             "read/write operations during the last `idle_timeout_s'");
DEFINE_int32(logoff_ms, 2000, "Maximum duration of server's LOGOFF state "
             "(waiting for client to close connection before server stops)");
DEFINE_int32(max_concurrency, 0, "Limit of request processing in parallel");
DEFINE_int32(server_num, 1, "Number of servers");
DEFINE_string(sleep_us, "", "Sleep so many microseconds before responding");
DEFINE_bool(spin, false, "spin rather than sleep");
DEFINE_double(exception_ratio, 0.1, "Percentage of irregular latencies");
DEFINE_double(min_ratio, 0.2, "min_sleep / sleep_us");
DEFINE_double(max_ratio, 10, "max_sleep / sleep_us");

// Your implementation of example::EchoService
class EchoServiceImpl : public example::EchoService {
public:
    EchoServiceImpl() : _index(0) {}
    virtual ~EchoServiceImpl() {};
    void set_index(size_t index, int64_t sleep_us) { 
        _index = index; 
        _sleep_us = sleep_us;
    }
    virtual void Echo(google::protobuf::RpcController* cntl_base,
                      const example::EchoRequest* request,
                      example::EchoResponse* response,
                      google::protobuf::Closure* done) {
        brpc::ClosureGuard done_guard(done);
        brpc::Controller* cntl =
            static_cast<brpc::Controller*>(cntl_base);
        if (_sleep_us > 0) {
            double delay = _sleep_us;
            const double a = FLAGS_exception_ratio * 0.5;
            if (a >= 0.0001) {
                double x = butil::RandDouble();
                if (x < a) {
                    const double min_sleep_us = FLAGS_min_ratio * _sleep_us;
                    delay = min_sleep_us + (_sleep_us - min_sleep_us) * x / a;
                } else if (x + a > 1) {
                    const double max_sleep_us = FLAGS_max_ratio * _sleep_us;
                    delay = _sleep_us + (max_sleep_us - _sleep_us) * (x + a - 1) / a;
                }
            }
            if (FLAGS_spin) {
                int64_t end_time = butil::gettimeofday_us() + (int64_t)delay;
                while (butil::gettimeofday_us() < end_time) {}
            } else {
                bthread_usleep((int64_t)delay);
            }
        }

        // Echo request and its attachment
        response->set_message(request->message());
        if (FLAGS_echo_attachment) {
            cntl->response_attachment().append(cntl->request_attachment());
        }
        _nreq << 1;
    }

    size_t num_requests() const { return _nreq.get_value(); }

private:
    size_t _index;
    int64_t _sleep_us;
    bvar::Adder<size_t> _nreq;
};

int main(int argc, char* argv[]) {
    // Parse gflags. We recommend you to use gflags as well.
    GFLAGS_NS::ParseCommandLineFlags(&argc, &argv, true);

    if (FLAGS_server_num <= 0) {
        LOG(ERROR) << "server_num must be positive";
        return -1;
    }

    // We need multiple servers in this example.
    brpc::Server* servers = new brpc::Server[FLAGS_server_num];
    // For more options see `brpc/server.h'.
    brpc::ServerOptions options;
    options.idle_timeout_sec = FLAGS_idle_timeout_s;
    options.max_concurrency = FLAGS_max_concurrency;

    butil::StringSplitter sp(FLAGS_sleep_us.c_str(), ',');
    std::vector<int64_t> sleep_list;
    for (; sp; ++sp) {
        sleep_list.push_back(strtoll(sp.field(), NULL, 10));
    }
    if (sleep_list.empty()) {
        sleep_list.push_back(0);
    }

    // Instance of your services.
    EchoServiceImpl* echo_service_impls = new EchoServiceImpl[FLAGS_server_num];
    // Add the service into servers. Notice the second parameter, because the
    // service is put on stack, we don't want server to delete it, otherwise
    // use brpc::SERVER_OWNS_SERVICE.
    for (int i = 0; i < FLAGS_server_num; ++i) {
        int64_t sleep_us = sleep_list[(size_t)i < sleep_list.size() ? i : (sleep_list.size() - 1)];
        echo_service_impls[i].set_index(i, sleep_us);
        // will be shown on /version page
        servers[i].set_version(butil::string_printf(
                    "example/dynamic_partition_echo_c++[%d]", i));
        if (servers[i].AddService(&echo_service_impls[i], 
                                  brpc::SERVER_DOESNT_OWN_SERVICE) != 0) {
            LOG(ERROR) << "Fail to add service";
            return -1;
        }
        // Start the server.
        int port = FLAGS_port + i;
        if (servers[i].Start(port, &options) != 0) {
            LOG(ERROR) << "Fail to start EchoServer";
            return -1;
        }
    }

    // Service logic are running in separate worker threads, for main thread,
    // we don't have much to do, just spinning.
    std::vector<size_t> last_num_requests(FLAGS_server_num);
    while (!brpc::IsAskedToQuit()) {
        sleep(1);

        size_t cur_total = 0;
        for (int i = 0; i < FLAGS_server_num; ++i) {
            const size_t current_num_requests =
                    echo_service_impls[i].num_requests();
            size_t diff = current_num_requests - last_num_requests[i];
            cur_total += diff;
            last_num_requests[i] = current_num_requests;
            LOG(INFO) << "S[" << i << "]=" << diff << ' ' << noflush;
        }
        LOG(INFO) << "[total=" << cur_total << ']';
    }

    // Don't forget to stop and join the server otherwise still-running
    // worker threads may crash your program. Clients will have/ at most
    // `FLAGS_logoff_ms' to close their connections. If some connections
    // still remains after `FLAGS_logoff_ms', they will be closed by force.
    for (int i = 0; i < FLAGS_server_num; ++i) {
        servers[i].Stop(FLAGS_logoff_ms);
    }
    for (int i = 0; i < FLAGS_server_num; ++i) {
        servers[i].Join();
    }
    delete [] servers;
    delete [] echo_service_impls;
    return 0;
}

你可能感兴趣的:(brpc,brpc,c++,后端)