- 机器学习每周挑战——二手车车辆信息&交易售价数据
梦想成为一名机器学习高手
机器学习python人工智能
这是数据集的截图目录背景描述数据说明车型对照:燃料类型对照:老规矩,第一步先导入用到的库第二步,读入数据:第三步,数据预处理第四步:对数据的分析第五步:模型建立前的准备工作第六步:多元线性回归模型的建立第七步:随机森林模型的建立问题:背景描述本数据爬取自印度最大的二手车交易平台CARS24,包含8000+该平台上交易车辆的关键评估信息。CARS24成立于2015年,总部位于印度古尔冈,是一个在印度
- 03 数据可视化的世界非常广阔,除了已提到的类型,还有许多更细分或前沿的可视化形式。
晨曦543210
信息可视化人工智能
十五、机器学习与数据科学专用图表特征重要性图(FeatureImportancePlot)用途:展示机器学习模型中各特征对预测结果的贡献度。示例:随机森林模型中影响房价预测的关键因素。混淆矩阵热力图(ConfusionMatrixHeatmap)用途:分类模型性能评估,显示预测结果与真实标签的对比。示例:疾病诊断模型的真阳性/假阳性分布。学习曲线(LearningCurve)用途:分析模型训练过程
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 用matlab实现随机森林算法
showmethetime
算法matlab随机森林
用matlab实现随机森林算法,里面附有说明文档,参数可调节RandomForest_matlab/RandomForests/RF.mexw32,81920RandomForest_matlab/RandomForests/RF_demo.m,2536RandomForest_matlab/RandomForests/runRF.m,2616RandomForest_matlab/RandomF
- 【机器学习|学习笔记】随机森林(Random Forest, RF)详解,附代码。
努力毕业的小土博^_^
机器学习基础算法优质笔记1机器学习学习笔记随机森林人工智能
【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。文章目录【机器学习|学习笔记】随机森林(RandomForest,RF)详解,附代码。前言起源随机子空间法与Bagging的萌芽原理算法机制理论保障发展应用优缺点优点缺点Python实现示例(Scikit-learn)欢迎铁子们点赞、关注、收藏
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- 机器学习:集成算法的装袋法(Bagging):随机森林(Random Forest)
rubyw
#概念及理论机器学习算法随机森林
随机森林(RandomForest)是一种集成学习方法,通过构建多个决策树并结合其预测结果来提升模型的性能和稳定性。它由LeoBreiman于2001年提出,广泛应用于分类和回归任务。以下是随机森林的详细介绍,包括其基本概念、构建过程、优缺点及应用场景。基本概念随机森林是一种基于决策树的集成算法,通过生成多棵决策树,并将这些树的预测结果结合起来,以提高整体模型的预测准确性和稳定性。每棵决策树都是在
- 森林的智慧:随机森林与集成学习的民主之道
田园Coder
人工智能科普人工智能科普
当约阿夫·弗罗因德和罗伯特·沙皮尔提出的AdaBoost算法在90年代末期以其强大的预测精度震惊机器学习界,展示了“团结弱者为强者”的集成魅力时,另一种集成思想也在悄然孕育。这种思想同样信奉“众人拾柴火焰高”,但走的是一条与AdaBoost截然不同的路径:它不执着于反复调整数据权重去“关注”被前序模型分错的困难样本,而是致力于创造尽可能多样化的模型,然后让这些模型平等地投票。它的核心哲学是:如果每
- 机器学习:集成学习方法之随机森林(Random Forest)
慕婉0307
机器学习集成学习机器学习随机森林
一、集成学习与随机森林概述1.1什么是集成学习集成学习(EnsembleLearning)是机器学习中一种强大的范式,它通过构建并结合多个基学习器(baselearner)来完成学习任务。集成学习的主要思想是"三个臭皮匠,顶个诸葛亮",即通过组合多个弱学习器来获得一个强学习器。集成学习方法主要分为两大类:Bagging(BootstrapAggregating):并行训练多个基学习器,然后通过投票
- 七天学完十大机器学习经典算法-05.从投票到分类:K近邻(KNN)算法完全指南
接上一篇《七天学完十大机器学习经典算法-04.随机森林:群众智慧的机器学习实践》想象一下,你搬进了一个新小区。想知道这个小区整体氛围如何?最直接的方法就是看看你最近的几家邻居是什么样的人——如果邻居们都很安静、整洁,小区大概率不错;如果邻居们深夜喧哗、环境杂乱,你可能就得重新考虑了。K近邻(K-NearestNeighbors,KNN)算法的核心思想,就如同这个观察邻居的过程。它是机器学习中最直观
- 从决策树到随机森林:Python机器学习里的“树形家族“深度实战与原理拆解
小张在编程
机器学习决策树随机森林
引言在机器学习的算法森林中,有一对"树形兄弟"始终占据着C位——决策树像个逻辑清晰的"老教授",用可视化的树状结构把复杂决策过程拆解成"是/否"的简单判断;而它的进阶版随机森林更像一支"精英军团",通过多棵决策树的"投票表决",在准确性与抗过拟合能力上实现了质的飞跃。无论是医疗诊断中的疾病预测,还是金融风控里的违约判别,这对组合都用强大的适应性证明着自己的"算法常青树"地位。今天,我们就从原理到实
- 深入详解:随机森林算法——概念、原理、实现与应用场景
猿享天开
算法随机森林机器学习
深入详解:随机森林算法——概念、原理、实现与应用场景随机森林(RandomForest,RF)是一种经典的集成学习算法,广泛应用于机器学习任务。本文将通过图文结合的方式,全面解析随机森林的核心原理、实现细节和应用实践,帮助读者建立系统认知。1.核心概念与直观理解1.1什么是随机森林?随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树进行协同预测。其核心思想是"三个臭皮匠,顶个诸葛亮"——多
- 随机森林详解:原理、优势与应用实践
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能DecisionTree数据挖掘
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!随机森林介绍1.定义:随机森林是一种强大的、高度灵活的集成学习(EnsembleLearning)算法,主要用于分类和回归任务。它的核心思想是构建多棵决策树(DecisionTree),并将这些树的预测结果进行组合(例如,分类任务采用投票,回归任务采用
- 60天python训练计划----day55
DAY55序列预测任务介绍知识点回顾序列预测介绍单步预测多步预测的2种方式序列数据的处理:滑动窗口多输入多输出任务的思路经典机器学习在序列任务上的劣势;以随机森林为例一、序列预测任务介绍1.1序列预测是什么?我们之前接触到的结构化数据,它本身不具备顺序,我们认为每个样本之间独立无关,样本之间即使调换顺序,仍然不影响模型的训练。但是日常中很多数据是存在先后关系的,而他们对应的任务是预测下一步的值,我
- 使用随机森林实现目标检测
司南锤
python基础学习AI随机森林
核心实现思路滑动窗口策略:在图像上滑动固定大小的窗口,对每个窗口进行分类多维特征提取:结合统计特征、纹理特征、边缘特征、形状特征等随机森林分类:训练二分类器判断窗口是否包含目标后处理优化:使用非极大值抑制减少重复检测特征工程的重要性LBP纹理特征:捕捉局部纹理模式灰度共生矩阵:描述纹理的统计特性边缘密度:反映目标边界信息形状描述符:圆形度、面积比等几何特征实际应用建议数据收集:收集大量正负样本进行
- 6.26打卡
丁值心
机器学习小白从0到1人工智能深度学习机器学习python开发语言
@浙大疏锦行DAY55序列预测任务介绍知识点回顾1.序列预测介绍a.单步预测b.多步预测的2种方式2.序列数据的处理:滑动窗口3.多输入多输出任务的思路4.经典机器学习在序列任务上的劣势;以随机森林为例作业:手动构造类似的数据集(如cosx数据),观察不同的机器学习模型的差异#准备工作importnumpyasnpimportrandomimportosimportmatplotlib.pyplo
- 梯度增强与XGBoost算法解析
weixin_47233946
算法算法
##一、梯度增强(GradientBoosting)原理###1.1集成学习与Boosting集成学习通过结合多个弱模型提升整体性能,主要包括Bagging(如随机森林)和Boosting两类方法。**梯度增强**属于Boosting家族,核心思想是**串行训练模型,每一步修正前序模型的残差**,最终形成强预测器。###1.2算法核心流程1.**初始化基模型**:用常数(如目标变量均值)预测。2.
- python训练day14 shap图绘制
小暖星
python训练python开发语言人工智能
SHAP原理目标:理解复杂机器学习模型(尤其是“黑箱”模型,如随机森林、梯度提升树、神经网络等)为什么会对特定输入做出特定预测。SHAP提供了一种统一的方法来解释模型的输出。核心思想:合作博弈论中的Shapley值SHAP(SHapleyAdditiveexPlanations)的核心基于博弈论中的Shapley值概念。想象一个合作游戏:1.玩家(Players)::模型的特征(Features)
- 分类树/装袋法/随机森林算法的R语言实现
廖致君
R
原文首发于简书于[2018.06.12]本文是我自己动手用R语言写的实现分类树的代码,以及在此基础上写的袋装法(bagging)和随机森林(randomforest)的算法实现。全文的结构是:分类树基本知识predginisplitrulesplitrule_bestsplitrule_randomsplittingbuildTreepredict装袋法与随机森林基本知识baggingpredic
- CART算法全解析:分类回归双修的决策树之王
大千AI助手
人工智能Python#OTHER算法分类回归决策树数据挖掘CARTDecisionTree
CART(ClassificationandRegressionTrees)是决策树领域的里程碑算法,由统计学家Breiman等人在1984年提出。作为当今最主流的决策树实现,它革命性地统一了分类与回归任务,其二叉树结构和剪枝技术成为现代集成学习(如随机森林、XGBoost)的基石。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕
- Day55打卡 @浙大疏锦行
ayuan0119
python打卡shupython
知识点回顾序列预测介绍单步预测多步预测的2种方式序列数据的处理:滑动窗口多输入多输出任务的思路经典机器学习在序列任务上的劣势;以随机森林为例importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.preprocessingimportMinMaxScalerfromsklearn.ensembleimportRandomForestRegres
- Python机器学习小项目实战:随机森林算法实现信用卡欺诈检测
码上研习
Python机器学习小项目实战机器学习算法python
1.引言在之前的机器学习之旅中,我们已经探索了许多强大的算法,例如逻辑回归、支持向量机、决策树等等。每种算法都有其独特的优势和适用场景,但它们也存在一些共同的局限性。单个模型往往难以完美地捕捉复杂的数据模式,容易受到过拟合或欠拟合的影响,并且在面对噪声数据时显得脆弱。想象一下,你正在尝试预测股票价格的涨跌。你可以使用逻辑回归,但是逻辑回归假设特征之间是线性相关的,这可能无法捕捉股票市场中的复杂非线
- 随机森林预测、重要性分析(Python实现)
不期而遇__
python随机森林机器学习
fromsklearn.model_selectionimporttrain_test_splitfromsklearn.ensembleimportRandomForestRegressor,RandomForestClassifierfromfunctoolsimportreduceimportnumpyasnpimportpandasaspd#数据导入及基本信息定义data=pd.read_
- 机器学习与深度学习07-随机森林01
my_q
机器学习与深度学习机器学习深度学习随机森林
目录前文回顾1.随机森林的定义2.随机森林中的过拟合3.随机森林VS单一决策树4.随机森林的随机性前文回顾上一篇文章链接:地址1.随机森林的定义随机森林(RandomForest)是一种集成学习算法,用于解决分类和回归问题。它基于决策树(DecisionTrees)构建,并通过组合多个决策树来提高模型的性能和稳定性。随机森林的主要思想是通过随机选择样本和特征来构建多棵决策树,然后综合它们的预测结果
- Hummingbird库:将机器学习模型转换为深度学习模型
萧鼎
python基础到进阶教程机器学习深度学习人工智能
引言随着深度学习在各个领域的广泛应用,研究人员和工程师开始探索如何将传统的机器学习模型(如决策树、随机森林等)转换为可以在GPU上高效运行的神经网络模型。微软推出的Hummingbird库正是为了解决这一需求,它可以将经过训练的传统机器学习模型转换为等效的深度学习模型,从而加速推理并支持跨平台部署。在本博客中,我们将深入探讨Hummingbird的原理、使用方法、适用场景,并通过实验展示其优势。第
- python第十五天打卡
复习基准模型fromsklearn.ensembleimportRandomForestClassifier#随机森林分类器fromsklearn.metricsimportaccuracy_score,precision_score,recall_score,f1_score#用于评估分类器性能的指标fromsklearn.metricsimportclassification_report,c
- BERT 模型微调与传统机器学习的对比
MYH516
bert机器学习人工智能
BERT微调与传统机器学习的区别和联系:传统机器学习流程传统机器学习处理文本分类通常包含以下步骤:特征工程:手动设计特征(如TF-IDF、词袋模型)模型训练:使用分类器(如SVM、随机森林、逻辑回归)特征和模型调优:反复调整特征和超参数BERT微调流程BERT微调的典型流程:预训练:使用大规模无标注数据预训练BERT模型数据准备:将文本转换为BERT输入格式(tokenize、添加特殊标记)模型微
- Python实战:随机森林
python游乐园
python随机森林机器学习
随机森林(RandomForest)是一种集成学习方法,由多个决策树组成,可用于分类和回归任务。基本原理随机森林的核心思想是构建多个决策树,并将这些决策树的结果进行综合。在构建每棵决策树时,采用了两种随机化策略:数据采样随机:使用自助采样法(BootstrapSampling)从原始训练数据集中有放回地抽取一定数量的样本,形成一个新的训练子集,用于训练每一棵决策树。这意味着每棵树的训练数据可能会有
- 随机森林可以如何优化
andriy_mulyar
随机森林决策树机器学习算法python
随机森林是一种常用的机器学习方法,它可以通过以下几种方法来优化:增加决策树的数量:随机森林的性能取决于决策树的数量,因此增加决策树的数量可以提高模型的精度。限制决策树的最大深度:决策树过深可能导致过拟合,因此限制决策树的最大深度可以避免过拟合。调整随机选择特征的数量:随机森林通过随机选择特征来建立决策树,调整随机选择特征的数量可以控制决策树的复杂度。使用不同的特征重要性评估方法:随机森林可以使用不
- Python机器学习小项目实战:随机森林模型优化,提升信用卡欺诈检测效能
码上研习
Python机器学习小项目实战人工智能算法机器学习网格搜索贝叶斯优化随机搜索
1.引言在之前的博客中,我们已经成功地使用随机森林算法构建了一个信用卡欺诈检测模型。随机森林算法凭借其良好的性能和易于使用的特点,在各种实际应用中都取得了良好的效果。然而,仅仅构建一个模型是不够的。为了提高模型在实际场景中的泛化能力和检测精度,我们需要对其进行优化。模型优化是指通过调整模型的参数、选择合适的特征或使用更高级的算法来提高模型的性能。在信用卡欺诈检测中,模型优化可以帮助我们更准确地识别
- Maven
Array_06
eclipsejdkmaven
Maven
Maven是基于项目对象模型(POM), 信息来管理项目的构建,报告和文档的软件项目管理工具。
Maven 除了以程序构建能力为特色之外,还提供高级项目管理工具。由于 Maven 的缺省构建规则有较高的可重用性,所以常常用两三行 Maven 构建脚本就可以构建简单的项目。由于 Maven 的面向项目的方法,许多 Apache Jakarta 项目发文时使用 Maven,而且公司
- ibatis的queyrForList和queryForMap区别
bijian1013
javaibatis
一.说明
iBatis的返回值参数类型也有种:resultMap与resultClass,这两种类型的选择可以用两句话说明之:
1.当结果集列名和类的属性名完全相对应的时候,则可直接用resultClass直接指定查询结果类
- LeetCode[位运算] - #191 计算汉明权重
Cwind
java位运算LeetCodeAlgorithm题解
原题链接:#191 Number of 1 Bits
要求:
写一个函数,以一个无符号整数为参数,返回其汉明权重。例如,‘11’的二进制表示为'00000000000000000000000000001011', 故函数应当返回3。
汉明权重:指一个字符串中非零字符的个数;对于二进制串,即其中‘1’的个数。
难度:简单
分析:
将十进制参数转换为二进制,然后计算其中1的个数即可。
“
- 浅谈java类与对象
15700786134
java
java是一门面向对象的编程语言,类与对象是其最基本的概念。所谓对象,就是一个个具体的物体,一个人,一台电脑,都是对象。而类,就是对象的一种抽象,是多个对象具有的共性的一种集合,其中包含了属性与方法,就是属于该类的对象所具有的共性。当一个类创建了对象,这个对象就拥有了该类全部的属性,方法。相比于结构化的编程思路,面向对象更适用于人的思维
- linux下双网卡同一个IP
被触发
linux
转自:
http://q2482696735.blog.163.com/blog/static/250606077201569029441/
由于需要一台机器有两个网卡,开始时设置在同一个网段的IP,发现数据总是从一个网卡发出,而另一个网卡上没有数据流动。网上找了下,发现相同的问题不少:
一、
关于双网卡设置同一网段IP然后连接交换机的时候出现的奇怪现象。当时没有怎么思考、以为是生成树
- 安卓按主页键隐藏程序之后无法再次打开
肆无忌惮_
安卓
遇到一个奇怪的问题,当SplashActivity跳转到MainActivity之后,按主页键,再去打开程序,程序没法再打开(闪一下),结束任务再开也是这样,只能卸载了再重装。而且每次在Log里都打印了这句话"进入主程序"。后来发现是必须跳转之后再finish掉SplashActivity
本来代码:
// 销毁这个Activity
fin
- 通过cookie保存并读取用户登录信息实例
知了ing
JavaScripthtml
通过cookie的getCookies()方法可获取所有cookie对象的集合;通过getName()方法可以获取指定的名称的cookie;通过getValue()方法获取到cookie对象的值。另外,将一个cookie对象发送到客户端,使用response对象的addCookie()方法。
下面通过cookie保存并读取用户登录信息的例子加深一下理解。
(1)创建index.jsp文件。在改
- JAVA 对象池
矮蛋蛋
javaObjectPool
原文地址:
http://www.blogjava.net/baoyaer/articles/218460.html
Jakarta对象池
☆为什么使用对象池
恰当地使用对象池化技术,可以有效地减少对象生成和初始化时的消耗,提高系统的运行效率。Jakarta Commons Pool组件提供了一整套用于实现对象池化
- ArrayList根据条件+for循环批量删除的方法
alleni123
java
场景如下:
ArrayList<Obj> list
Obj-> createTime, sid.
现在要根据obj的createTime来进行定期清理。(释放内存)
-------------------------
首先想到的方法就是
for(Obj o:list){
if(o.createTime-currentT>xxx){
- 阿里巴巴“耕地宝”大战各种宝
百合不是茶
平台战略
“耕地保”平台是阿里巴巴和安徽农民共同推出的一个 “首个互联网定制私人农场”,“耕地宝”由阿里巴巴投入一亿 ,主要是用来进行农业方面,将农民手中的散地集中起来 不仅加大农民集体在土地上面的话语权,还增加了土地的流通与 利用率,提高了土地的产量,有利于大规模的产业化的高科技农业的 发展,阿里在农业上的探索将会引起新一轮的产业调整,但是集体化之后农民的个体的话语权 将更少,国家应出台相应的法律法规保护
- Spring注入有继承关系的类(1)
bijian1013
javaspring
一个类一个类的注入
1.AClass类
package com.bijian.spring.test2;
public class AClass {
String a;
String b;
public String getA() {
return a;
}
public void setA(Strin
- 30岁转型期你能否成为成功人士
bijian1013
成功
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- [Velocity三]基于Servlet+Velocity的web应用
bit1129
velocity
什么是VelocityViewServlet
使用org.apache.velocity.tools.view.VelocityViewServlet可以将Velocity集成到基于Servlet的web应用中,以Servlet+Velocity的方式实现web应用
Servlet + Velocity的一般步骤
1.自定义Servlet,实现VelocityViewServl
- 【Kafka十二】关于Kafka是一个Commit Log Service
bit1129
service
Kafka is a distributed, partitioned, replicated commit log service.这里的commit log如何理解?
A message is considered "committed" when all in sync replicas for that partition have applied i
- NGINX + LUA实现复杂的控制
ronin47
lua nginx 控制
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-14.输入一个已经按升序排序过的数组和一个数字, 在数组中查找两个数,使得它们的和正好是输入的那个数字
bylijinnan
java
public class TwoElementEqualSum {
/**
* 第 14 题:
题目:输入一个已经按升序排序过的数组和一个数字,
在数组中查找两个数,使得它们的和正好是输入的那个数字。
要求时间复杂度是 O(n) 。如果有多对数字的和等于输入的数字,输出任意一对即可。
例如输入数组 1 、 2 、 4 、 7 、 11 、 15 和数字 15 。由于
- Netty源码学习-HttpChunkAggregator-HttpRequestEncoder-HttpResponseDecoder
bylijinnan
javanetty
今天看Netty如何实现一个Http Server
org.jboss.netty.example.http.file.HttpStaticFileServerPipelineFactory:
pipeline.addLast("decoder", new HttpRequestDecoder());
pipeline.addLast(&quo
- java敏感词过虑-基于多叉树原理
cngolon
违禁词过虑替换违禁词敏感词过虑多叉树
基于多叉树的敏感词、关键词过滤的工具包,用于java中的敏感词过滤
1、工具包自带敏感词词库,第一次调用时读入词库,故第一次调用时间可能较长,在类加载后普通pc机上html过滤5000字在80毫秒左右,纯文本35毫秒左右。
2、如需自定义词库,将jar包考入WEB-INF工程的lib目录,在WEB-INF/classes目录下建一个
utf-8的words.dict文本文件,
- 多线程知识
cuishikuan
多线程
T1,T2,T3三个线程工作顺序,按照T1,T2,T3依次进行
public class T1 implements Runnable{
@Override
 
- spring整合activemq
dalan_123
java spring jms
整合spring和activemq需要搞清楚如下的东东1、ConnectionFactory分: a、spring管理连接到activemq服务器的管理ConnectionFactory也即是所谓产生到jms服务器的链接 b、真正产生到JMS服务器链接的ConnectionFactory还得
- MySQL时间字段究竟使用INT还是DateTime?
dcj3sjt126com
mysql
环境:Windows XPPHP Version 5.2.9MySQL Server 5.1
第一步、创建一个表date_test(非定长、int时间)
CREATE TABLE `test`.`date_test` (`id` INT NOT NULL AUTO_INCREMENT ,`start_time` INT NOT NULL ,`some_content`
- Parcel: unable to marshal value
dcj3sjt126com
marshal
在两个activity直接传递List<xxInfo>时,出现Parcel: unable to marshal value异常。 在MainActivity页面(MainActivity页面向NextActivity页面传递一个List<xxInfo>): Intent intent = new Intent(this, Next
- linux进程的查看上(ps)
eksliang
linux pslinux ps -llinux ps aux
ps:将某个时间点的进程运行情况选取下来
转载请出自出处:http://eksliang.iteye.com/admin/blogs/2119469
http://eksliang.iteye.com
ps 这个命令的man page 不是很好查阅,因为很多不同的Unix都使用这儿ps来查阅进程的状态,为了要符合不同版本的需求,所以这个
- 为什么第三方应用能早于System的app启动
gqdy365
System
Android应用的启动顺序网上有一大堆资料可以查阅了,这里就不细述了,这里不阐述ROM启动还有bootloader,软件启动的大致流程应该是启动kernel -> 运行servicemanager 把一些native的服务用命令启动起来(包括wifi, power, rild, surfaceflinger, mediaserver等等)-> 启动Dalivk中的第一个进程Zygot
- App Framework发送JSONP请求(3)
hw1287789687
jsonp跨域请求发送jsonpajax请求越狱请求
App Framework 中如何发送JSONP请求呢?
使用jsonp,详情请参考:http://json-p.org/
如何发送Ajax请求呢?
(1)登录
/***
* 会员登录
* @param username
* @param password
*/
var user_login=function(username,password){
// aler
- 发福利,整理了一份关于“资源汇总”的汇总
justjavac
资源
觉得有用的话,可以去github关注:https://github.com/justjavac/awesome-awesomeness-zh_CN 通用
free-programming-books-zh_CN 免费的计算机编程类中文书籍
精彩博客集合 hacke2/hacke2.github.io#2
ResumeSample 程序员简历
- 用 Java 技术创建 RESTful Web 服务
macroli
java编程WebREST
转载:http://www.ibm.com/developerworks/cn/web/wa-jaxrs/
JAX-RS (JSR-311) 【 Java API for RESTful Web Services 】是一种 Java™ API,可使 Java Restful 服务的开发变得迅速而轻松。这个 API 提供了一种基于注释的模型来描述分布式资源。注释被用来提供资源的位
- CentOS6.5-x86_64位下oracle11g的安装详细步骤及注意事项
超声波
oraclelinux
前言:
这两天项目要上线了,由我负责往服务器部署整个项目,因此首先要往服务器安装oracle,服务器本身是CentOS6.5的64位系统,安装的数据库版本是11g,在整个的安装过程中碰到很多的坑,不过最后还是通过各种途径解决并成功装上了。转别写篇博客来记录完整的安装过程以及在整个过程中的注意事项。希望对以后那些刚刚接触的菜鸟们能起到一定的帮助作用。
安装过程中可能遇到的问题(注
- HttpClient 4.3 设置keeplive 和 timeout 的方法
supben
httpclient
ConnectionKeepAliveStrategy kaStrategy = new DefaultConnectionKeepAliveStrategy() {
@Override
public long getKeepAliveDuration(HttpResponse response, HttpContext context) {
long keepAlive
- Spring 4.2新特性-@Import注解的升级
wiselyman
spring 4
3.1 @Import
@Import注解在4.2之前只支持导入配置类
在4.2,@Import注解支持导入普通的java类,并将其声明成一个bean
3.2 示例
演示java类
package com.wisely.spring4_2.imp;
public class DemoService {
public void doSomethin