OkHttp3 源码分析
基于okhttp3.14.9
源码学习,先理清脉络,然后再深入的针对每一个小的知识点进行探究即可,切勿捡了芝麻丢了习惯
通常我们使用OkHttp进行网络访问,主要包含以下三步
一. 创建Request请求对象,封装请求相关的信息(url,method,body,headers)
二. 创建OkHttpClient对象,负责帮助我们将请求执行
三. 执行请求,设置对应的回调监听
// 一. 创建Request请求对象
Request request = new Request.Builder()
.url("https://api.github.com/")
.build();
// 二. 创建OkhttpClient对象
OkHttpClient client = new OkHttpClient.Builder()
.addInterceptor(new HttpLoggingInterceptor())
.cache(new Cache(cacheDir, cacheSize))
.build();
// 三. 执行请求
// 方式一 同步执行
okhttp3.Response execute = okHttpClient.newCall(request).execute();
// 方式二 异步执行
okHttpClient.newCall(request).enqueue(new okhttp3.Callback() {
@Override
public void onFailure(okhttp3.Call call, IOException e) {
}
@Override
public void onResponse(okhttp3.Call call, okhttp3.Response response) throws IOException {
}
});
上述两种方式分别是同步和异步执行请求,我们都分析下
一、 Request请求创建
// 1. 创建Request.Builder()
public Builder() {
dispatcher = new Dispatcher(); // 创建调度器,稍后在看
protocols = DEFAULT_PROTOCOLS; // 默认协议 http/1.1 & http/2
connectionSpecs = DEFAULT_CONNECTION_SPECS; // TSL连接 ,未加密、未认证的http连接
eventListenerFactory = EventListener.factory(EventListener.NONE); // 事件监听工厂
proxySelector = ProxySelector.getDefault(); // 代理选择器
cookieJar = CookieJar.NO_COOKIES;
socketFactory = SocketFactory.getDefault(); // Socket工厂
hostnameVerifier = OkHostnameVerifier.INSTANCE;
certificatePinner = CertificatePinner.DEFAULT;
proxyAuthenticator = Authenticator.NONE;
authenticator = Authenticator.NONE;
connectionPool = new ConnectionPool(); // 连接池
dns = Dns.SYSTEM;
followSslRedirects = true;
followRedirects = true;
retryOnConnectionFailure = true; //自动重连
connectTimeout = 10_000; // 连接超时时间10s
readTimeout = 10_000; // 读取超时时间10s
writeTimeout = 10_000; // 写入超时时间10s
pingInterval = 0;
}
步骤 1 .这里是通过Request.Builder, 使用建造者模式, 初始化相关的信息,最后统一转化为Request对象,稍后详细分析
// 2. 设置Url
public Builder url(String url) {
if (url == null) throw new NullPointerException("url == null");
// 1.将websocket协议中的WS协议和WSS协议转换成了http协议和Https协议
// Silently replace web socket URLs with HTTP URLs.
if (url.regionMatches(true, 0, "ws:", 0, 3)) {
url = "http:" + url.substring(3);
} else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
url = "https:" + url.substring(4);
}
// 2.将url转化为HttpUrl,这里的细节比较多,我们无需关注太多
HttpUrl parsed = HttpUrl.parse(url);
if (parsed == null) throw new IllegalArgumentException("unexpected url: " + url);
return url(parsed);
}
步骤 2 中,我们会把请求的url中websocket协议转化成http或https协议,然后使用HttpUrl进行转化,下面我们详细的说下转化过程
// 3. HttpUrl对于url的转化工作
public final class HttpUrl{
public static HttpUrl get(String url) {
return new Builder().parse(null, url).build();
}
Builder parse(@Nullable HttpUrl base, String input) {
int pos = skipLeadingAsciiWhitespace(input, 0, input.length());
int limit = skipTrailingAsciiWhitespace(input, pos, input.length());
...
// Scheme
// Authority.
// Resolve the relative path.
// Query.
// Fragment.
}
}
关于步骤 3 ,这里简单的说明下其主要作用,大家可以对照源码逐行进行分析
- 使用pos 和 limit 记录下 url真正开始和结束的地方
- 解析协议或者认证格式,将pos移动到协议或认证后
2.1 解析协议scheme(http, https)
2.2 解析url,存储其中用户名、密码、host域名、端口号和请求路径,比如(username:password@host:port),由于用户名,密码和端口号是可选的,所以可能是下面这种格式([username[:password]@]host[:port]) - 解析url 中?后面请求参数,移动pos
- 解析url 中#后面的网页标识符,
// 4. 将builder中的参数封装到Request对象
public Request build() {
if (url == null) throw new IllegalStateException("url == null");
return new Request(this);
}
public final class Request {
final HttpUrl url;
final String method;
final Headers headers;
final @Nullable RequestBody body;
final Map, Object> tags;
Request(Builder builder) {
this.url = builder.url;
this.method = builder.method;
this.headers = builder.headers.build();
this.body = builder.body;
this.tags = Util.immutableMap(builder.tags);
}
}
步骤 4 中,讲builder中解析的url, 请求方式method,请求headers, 请求体body等封装到Request对象中,下面我们继续看一下主流程二中OkHttpClient.Builder是如何创建OkHttpClient的
二、 OkHttpClient对象创建
// 5. OkHttpClient.Builder初始化
public Builder() {
dispatcher = new Dispatcher(); // 请求调度器,默认最大64个请求
protocols = DEFAULT_PROTOCOLS; // 协议http2, http1.1
connectionSpecs = DEFAULT_CONNECTION_SPECS; // 网络连通性协议tsl
eventListenerFactory = EventListener.factory(EventListener.NONE); // 网络连接状态监听
proxySelector = ProxySelector.getDefault(); // 网络代理
if (proxySelector == null) {
proxySelector = new NullProxySelector();
}
cookieJar = CookieJar.NO_COOKIES; // cookie
socketFactory = SocketFactory.getDefault(); // Socket
hostnameVerifier = OkHostnameVerifier.INSTANCE; // 域名校验
certificatePinner = CertificatePinner.DEFAULT; // 证书校验
proxyAuthenticator = Authenticator.NONE; // 认证
authenticator = Authenticator.NONE;
connectionPool = new ConnectionPool(); // 连接池
dns = Dns.SYSTEM; // DNS解析
followSslRedirects = true;
followRedirects = true;
retryOnConnectionFailure = true;
callTimeout = 0;
connectTimeout = 10_000; // 连接超时时间10秒
readTimeout = 10_000; // 接收超时时间10秒
writeTimeout = 10_000; // 发送超时时间10秒
pingInterval = 0;
}
步骤 5 . 我们可以看到Builder的构造方法中,对OkHttpClient的相关的参数做了默认的初始化,最终build()时传给了OkHttpClient。中途还有一些添加拦截器的操作,下面我们仔细的看下方式一请求的实现
三 、 执行请求
okHttpClient.newCall(request).execute()
// 6.准备一个将要再将来执行的请求Request
/**
* Prepares the {@code request} to be executed at some point in the future.
*/
@Override public Call newCall(Request request) {
return RealCall.newRealCall(this, request, false /* for web socket */);
}
步骤 6: 我们先来看一下RealCall的父类CallCall是一个准备好的可被执行的Request,如果被取消了就无法再次被执行,它内部有获取原始请求,同步异步执行请求,取消请求,克隆请求,和判断请求状态方法
// 7. Call是一个准备好的用来执行的Request
public interface Call extends Cloneable {
// 返回原始的请求对象
Request request();
// 同步阻塞的返回响应,这个只代表传输层成功,并不一定是应用层成功(404,500)
Response execute() throws IOException;
// 异步的执行请求,将请求放入请求队列等待执行
void enqueue(Callback responseCallback);
// 取消一个请求,如果请求已经执行完成是无法被取消的
void cancel();
boolean isExecuted();
boolean isCanceled();
/**
* Create a new, identical call to this one which can be enqueued or executed even if this call
* has already been.
*/
Call clone();
interface Factory {
Call newCall(Request request);
}
}
在 7 中,我们看一下RealCall类,RealCall的三个参数分别是我们的Client、Request,和是否是websocket(默认false),然后会通过client的事件监听工厂为RealCall创建一个回调监听
// 8. 创建了RealCall的实现
static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
// Safely publish the Call instance to the EventListener.
RealCall call = new RealCall(client, originalRequest, forWebSocket);
call.transmitter = new Transmitter(client, call);
return call;
}
步骤 8 中创建了准备好的用来执行的请求RealCall, 初始化了对应的发射器transmitter
// 9. RealCall初始化
private RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
this.client = client;
this.originalRequest = originalRequest;
this.forWebSocket = forWebSocket;
this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
}
步骤 9 中, RealCall的构造方法中主要是记录了client, 原始的request对象,并为client创建了重试和跟踪拦截器
// 10. RealCall 执行
@Override public Response execute() throws IOException {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
transmitter.timeoutEnter();
transmitter.callStart();
try {
client.dispatcher().executed(this);
return getResponseWithInterceptorChain();
} finally {
client.dispatcher().finished(this);
}
}
步骤 10 :RealCall的执行excute方法。其核心我们可以看到是通过把Call放入到调度器内部的数组
// 11. Dispatcher
public final class Dispatcher {
private final Deque runningSyncCalls = new ArrayDeque<>();
/** Used by {@code Call#execute} to signal it is in-flight. */
synchronized void executed(RealCall call) {
// 放入队列等待执行
runningSyncCalls.add(call);
}
}
步骤11 :继续向下,我们会发现调度器Dispatcher,会把请求Call放入双端队列,
后续真正去同步执行的是通过getResponseWithInterceptorChain()方法,并返回响应结果,这一步开始之前,我们先说一下拦截器
RetryAndFollowUpInterceptor
在网络请求失败后进行重试
当服务器返回当前请求需要进行重定向时直接发起新的请求,并在条件允许情况下复用当前连接BridgeInteceptor
设置内容长度,内容编码
设置gzip压缩,并在接收到内容后进行解压。省去了应用层处理数据解压的麻烦
添加cookie
设置其他报头,如User-Agent,Host,Keep-alive等。其中Keep-Alive是实现多路复用的必要步骤CacheInterceptor
当网络请求有符合要求的Cache时直接返回Cache
当服务器返回内容有改变时更新当前cache
如果当前cache失效,删除ConnectInterceptor
为当前请求找到合适的连接,可能复用已有连接也可能是重新创建的连接,返回的连接由连接池负责决定。CallServerInterceptor
负责向服务器发起真正的访问请求,并在接收到服务器返回后读取响应返回
拦截器的执行流程
这一步Response result = getResponseWithInterceptorChain(); 就是执行拦截器链,直到返回Response:
// 12.执行
Response getResponseWithInterceptorChain() throws IOException {
// 12.1 构建拦截器列表集合
// Build a full stack of interceptors.
List interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(new RetryAndFollowUpInterceptor(client));
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
// 12.2 把拦截器列表封装到为真正的执行拦截器链
Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
originalRequest, this, client.connectTimeoutMillis(),
client.readTimeoutMillis(), client.writeTimeoutMillis());
boolean calledNoMoreExchanges = false;
try {
// 12.3 开始执行,并返回响应Response对象
Response response = chain.proceed(originalRequest);
if (transmitter.isCanceled()) {
closeQuietly(response);
throw new IOException("Canceled");
}
return response;
} catch (IOException e) {
calledNoMoreExchanges = true;
throw transmitter.noMoreExchanges(e);
} finally {
if (!calledNoMoreExchanges) {
transmitter.noMoreExchanges(null);
}
}
}
步骤 12 中,会逐步添加各种类型的拦截器,然后将所有的拦截器全部封装到RealInterceptorChain中,最终调用其proceed方法,来执行请求,并返回Response对象。下面我们继续看下proceed方法具体做了哪些操作
// 13 .
public final class RealInterceptorChain implements Interceptor.Chain {
@Override public Response proceed(Request request) throws IOException {
return proceed(request, streamAllocation, httpCodec, connection);
}
// 13. 核心的执行过程
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
RealConnection connection) throws IOException {
......
// Call the next interceptor in the chain.
// 13.1 index从0开始,获取创建下一个拦截器链
RealInterceptorChain next = new RealInterceptorChain(interceptors, streamAllocation, httpCodec,
connection, index + 1, request, call, eventListener, connectTimeout, readTimeout,
writeTimeout);
// 13.2 取出当前的拦截器
Interceptor interceptor = interceptors.get(index);
// 13.3 执行当前拦截器返回对应的response
Response response = interceptor.intercept(next);
// Confirm that the next interceptor made its required call to chain.proceed().
...
return response;
}
}
步骤 13 , 最终的请求就是通过轮询整个interceptors,不断的创建每一个interceptor对应的chain,然后执行返回响应结果,这里采用的是经典的责任链模式。总结拦截器封装和执行过程如下
- 封装所有的拦截器到拦截器列表list
interceptors - 创建第一个拦截器执行链RealInterceptorChain chain,传入拦截器列表interceptors,默认当前index=0,并调用拦截器链chain的proceed处理方法
- 拦截器链chain内部会取出1中封装的拦截器列表中下一个拦截器,并将其封装为下一个拦截器链next; 然后取出当前index=0的拦截器,用其去执行拦截器next
- 所以除了CallServerInterceptor拦截器,其它拦截器内部都需要调用chain的proceed方法,来保证执行当前下一个拦截器任务
备注:关于response获取到响应后,会逐级逆向执行相关的拦截器,后续再补充
异步执行
okHttpClient.newCall(request).enqueue(callback)
以上分析的是同步请求,异步请求也是大同小异:
// 1. 放入队列
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
继续跟踪到Dispatcher中
// 2. Dispatcher中加入队列,使用executorService去执行AsyncCall
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}
Dispatcher的enqueue函数,先判断是否异步请求队列长度大于线程池最大请求数,以及当前主机的请求数超过5个。如果没有将给异步call加入到异步线程队列,调用线程池执行该call,如果超了,将该异步call加入到异步等待队列,
// 3 NamedRunnable
/**
* Runnable implementation which always sets its thread name.
*/
public abstract class NamedRunnable implements Runnable {
protected final String name;
public NamedRunnable(String format, Object... args) {
this.name = Util.format(format, args);
}
@Override public final void run() {
String oldName = Thread.currentThread().getName();
Thread.currentThread().setName(name);
try {
execute();
} finally {
Thread.currentThread().setName(oldName);
}
}
protected abstract void execute();
}
AsynCall是RealCall内部类,继承于NameRunnable,NameRunable其实就是Runnable的子类,定义了一个execute方法,执行在run()方法中。将AsyncCall加入到线程池,既然AsyncCall是一个Runnnable,那么就是执行Async的execute方法。
@Override protected void execute() {
boolean signalledCallback = false;
try {
Response response = getResponseWithInterceptorChain(); // 调用拦截器链,执行请求 返回response
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);//成功的回调
}
} catch (IOException e) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
responseCallback.onFailure(RealCall.this, e);// 失败回调
}
} finally {
client.dispatcher().finished(this); // 完成了请求
}
}
在一次网络请求不管成功失败,都会调用finally中的这行代码client.dispatcher().finished(this); 别问我为啥?跟踪一下这行代码:
/** Used by {@code AsyncCall#run} to signal completion. */
void finished(AsyncCall call) {
finished(runningAsyncCalls, call, true);
}
private void finished(Deque calls, T call, boolean promoteCalls) {
int runningCallsCount;
Runnable idleCallback;
synchronized (this) {
if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
if (promoteCalls) promoteCalls();
runningCallsCount = runningCallsCount();
idleCallback = this.idleCallback;
}
if (runningCallsCount == 0 && idleCallback != null) {
idleCallback.run();
}
}
将异步call熊runningAsyncCalls队列中移除,然后 如果是异步请求就会执行promoteCalls() 这个方法
private void promoteCalls() {
if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
for (Iterator i = readyAsyncCalls.iterator(); i.hasNext(); ) {
AsyncCall call = i.next();
if (runningCallsForHost(call) < maxRequestsPerHost) {
i.remove();
runningAsyncCalls.add(call);
executorService().execute(call);
}
if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
}
}
其实就是查看线程池情况,然后从readAsyncCall是中获取等待的异步call执行,如此循环,直到所有的异步call执行完成
未完待续。。。
如有问题,欢迎指正