考虑双移线轨迹 X 轴方向位移较大,机械楼停车场长度无法满足 100 ~ 120 m,因此采用五次多项式进行轨迹规划,在轨迹跟踪部分也能水一些内容
调整 double_lane.cpp 为 ref_lane.cpp,结合 FrenetPath 类将参考路径的构造抽离为单独的函数
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "cpprobotics_types_double.h"
#include "frenet_path_double.h"
#include "quintic_polynomial_double.h"
using namespace std;
using namespace cpprobotics;
// 双移线参考路径在 X 方向长度以及参考点的步长
const float length = 120.0;
const float step = 0.1;
// 五次多项式轨迹参数
#define DT 0.01
const double T = 50.0; // t-t0经历的时间
const double xend = 25.0;
const double yend = 3.0;
array<float, 4> calEulerToQuaternion(const float roll, const float pitch, const float yaw)
{
array<float, 4> calQuaternion = {0.0f, 0.0f, 0.0f, 1.0f}; // 初始化四元数
// 使用Eigen库来进行四元数计算
Eigen::Quaternionf quat;
quat = Eigen::AngleAxisf(roll, Eigen::Vector3f::UnitX()) *
Eigen::AngleAxisf(pitch, Eigen::Vector3f::UnitY()) *
Eigen::AngleAxisf(yaw, Eigen::Vector3f::UnitZ());
calQuaternion[0] = quat.x();
calQuaternion[1] = quat.y();
calQuaternion[2] = quat.z();
calQuaternion[3] = quat.w();
return calQuaternion;
}
FrenetPath fp;
void calc_frenet_paths()
{
// 起始状态
std::array<double, 3> x_start{0.0, 0.0, 0.0};
std::array<double, 3> x_end{xend, 0.0, 0.0};
// 终点状态
std::array<double, 3> y_start{0.0, 0.0, 0.0};
std::array<double, 3> y_end{yend, 0.0, 0.0};
// 纵向
QuinticPolynomial lon_qp(x_start[0], x_start[1], x_start[2], x_end[0],
x_end[1], x_end[2], T);
// 横向
QuinticPolynomial lat_qp(y_start[0], y_start[1], y_start[2], y_end[0],
y_end[1], y_end[2], T, xend);
for (double t = 0; t < T; t += DT)
{
double x = lon_qp.calc_point_x(t);
double xd = lon_qp.calc_point_xd(t);
double xdd = lon_qp.calc_point_xdd(t);
fp.t.emplace_back(t);
fp.x.emplace_back(x);
fp.x_d.emplace_back(xd);
fp.x_dd.emplace_back(xdd);
double y_x_t = lat_qp.calc_point_y_x(x);
double y_x_d = lat_qp.calc_point_y_x_d(x);
double y_x_t_d = lat_qp.calc_point_y_t_d(y_x_d, xd);
double y_x_dd = lat_qp.calc_point_y_x_dd(x);
double y_x_t_dd = lat_qp.calc_point_y_t_dd(y_x_dd, xd, y_x_d, xdd);
fp.y.emplace_back(y_x_t);
fp.y_d.emplace_back(y_x_t_d);
fp.y_dd.emplace_back(y_x_t_dd);
// 压入航向角
// fp.threat.emplace_back(lat_qp.calc_point_thetar(y_x_t_d, xd));
// 压入曲率
fp.k.emplace_back(lat_qp.calc_point_k(y_x_dd, y_x_d));
// fp.k.emplace_back(lat_qp.calc_point_k(y_x_t_dd, y_x_t_d, xdd, xd));
}
int num = fp.x.size();
for (int i = 0; i < num; i++)
{
double dy = fp.y[i + 1] - fp.y[i];
double dx = fp.x[i + 1] - fp.x[i];
fp.threat.emplace_back(lat_qp.calc_point_thetar(dy, dx));
}
// 最后一个道路航向角和前一个相同
// fp.threat.push_back(fp.threat.back());
}
void double_lane_path()
{
// 双移线构造的参数
const float shape = 2.4;
const float dx1 = 25.0, dx2 = 21.95;
const float dy1 = 4.05, dy2 = 5.7;
const float Xs1 = 27.19, Xs2 = 56.46;
int points_size = length / step;
fp.x.resize(points_size);
fp.y.resize(points_size);
fp.threat.resize(points_size);
fp.k.resize(points_size);
for (int i = 0; i <= points_size; ++i)
{
// 计算参考路径点信息
float ref_x = i * step;
float z1 = shape / dx1 * (ref_x - Xs1) - shape / 2.0;
float z2 = shape / dx2 * (ref_x - Xs2) - shape / 2.0;
float ref_y = dy1 / 2.0 * (1 + tanh(z1)) - dy2 / 2.0 * (1 + tanh(z2));
float ref_phi = atan(pow(dy1 * (1 / cosh(z1)), 2) * (1.2 / dx1) - pow(dy2 * (1 / cosh(z2)), 2) * (1.2 / dx2));
float y_dot = dy1 / 2 * pow(1 / cosh(z1), 2) * (shape / dx1) - dy2 / 2 * pow(1 / cosh(z2), 2) * (shape / dx2);
float y_ddot = -2 * dy1 * ((cosh(z1) - 1) / pow(cosh(z1), 3)) * pow(shape / dx1, 2) + 2 * dy2 * ((cosh(z2) - 1) / pow(cosh(z2), 3)) * pow(shape / dx2, 2);
float ref_k = abs(y_ddot) / pow(1 + y_dot * y_dot, 1.5);
fp.x[i] = ref_x;
fp.y[i] = ref_y;
fp.threat[i] = ref_phi;
fp.k[i] = ref_k;
}
}
int main(int argc, char *argv[])
{
ros::init(argc, argv, "ref_lane");
ros::NodeHandle nh;
ros::Publisher path_pub = nh.advertise<nav_msgs::Path>("/ref_path", 1000, true);
nav_msgs::Path reference_path;
reference_path.header.frame_id = "world";
reference_path.header.stamp = ros::Time::now();
geometry_msgs::PoseStamped pose;
pose.header.stamp = ros::Time::now();
pose.header.frame_id = "world";
// 五次多项式轨迹
calc_frenet_paths();
// 双移线轨迹
// double_lane_path();
int points_size = fp.x.size();
reference_path.poses.resize(points_size);
for (int i = 0; i < points_size; ++i)
{
cout << fp.x[i] << "," << fp.y[i] << "," << fp.threat[i] << endl;
// 计算四元数位姿
array<float, 4> calQuaternion = calEulerToQuaternion(0.0, 0.0, fp.threat[i]);
pose.pose.position.x = fp.x[i];
pose.pose.position.y = fp.y[i];
pose.pose.position.z = 0.0;
pose.pose.orientation.x = calQuaternion[0];
pose.pose.orientation.y = calQuaternion[1];
pose.pose.orientation.z = calQuaternion[2];
pose.pose.orientation.w = calQuaternion[3];
reference_path.poses[i] = pose;
}
ros::Rate loop(10);
while (ros::ok())
{
path_pub.publish(reference_path);
ros::spinOnce();
loop.sleep();
}
return 0;
}
跟踪过程如下
跟踪效果如下
这里只分析出横向跟踪误差,因为 y 与 x 的关系可以直接获得,yaw 与 x 的关系没有直接的表达式
y = 0.00000000 + 0.00000000 * x + 0.00000000 * x^2 + 0.00192000 * x^3 + -0.00011520 * x^4 + 0.00000184 * x^5
需要完善对于五次多项式的学习