一个完整的cuda动态链接库工程 01记

0. 思路

为了能把理念说通,使用了 step by step 的方式,一步步迭代会觉得比较合理。源代码从nv官方vectorAdd改过来的。

step 1, 单 cu 文件的可执行文件版本

源代码

main_app.cu

#include 
#include 

template 
__global__ void vector_square_add(T *A, T *B, T *C, int n)
{
  int i = blockDim.x * blockIdx.x + threadIdx.x;

  if (i < n)
  {
    C[i] = A[i] * A[i] + B[i] * B[i];
  }
}

template __global__ void vector_square_add(float *A, float *B, float *C, int n);

template 
__global__ void vector_add_kernel(T *A, T *B, T *C, int n)
{
  int i = blockDim.x * blockIdx.x + threadIdx.x;

  if (i < n)
  {
    C[i] = A[i] + B[i] + 0.0f;
  }
}

template __global__ void vector_add_kernel(float *A, float *B, float *C, int n);

template 
void ic_vector_add(T *A, T *B, T *C, int n)
{
  dim3 grid, block;

  block.x = 256;
  grid.x = (n + block.x - 1) / block.x;
  printf("CUDA kernel launch with %d blocks of %d threads\n", grid.x, block.x);

  vector_add_kernel<<>>(A, B, C, n);
}


template void ic_vector_add(float* A, float *B, float* C, int n);




int main(void)
{
  int n = 50;
  size_t size = n * sizeof(float);

  float *h_A = (float *)malloc(size);
  float *h_B = (float *)malloc(size);
  float *h_C = (float *)malloc(size);

  for (int i = 0; i < n; ++i)
  {
    h_A[i] = 3; // rand() / (float)RAND_MAX;
    h_B[i] = 4; // rand() / (float)RAND_MAX;
  }

  float *d_A = NULL;
  float *d_B = NULL;
  float *d_C = NULL;

  cudaMalloc((void **)&d_A, size);
  cudaMalloc((void **)&d_B, size);
  cudaMalloc((void **)&d_C, size);
  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
  cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
/*
  int threadsPerBlock = 256;
  int blocksPerGrid = (n + threadsPerBlock - 1) / threadsPerBlock;
  printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);

  vector_add_kernel<<>>(d_A, d_B, d_C, n);
*/

  ic_vector_add(d_A, d_B, d_C, n);

  printf("Copy output data from the CUDA device to the host memory\n");
  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

  for (int i = 0; i < n; ++i)
  {
    printf("%3.2f ", h_C[i]);
    // if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) {      fprintf(stderr, "Result verification failed at element %d!\n", i);      exit(EXIT_FAILURE);    }
  }

  printf("\nTest PASSED\n");

  cudaFree(d_A);
  cudaFree(d_B);
  cudaFree(d_C);
  free(h_A);
  free(h_B);
  free(h_C);

  printf("Done\n");
  return 0;
}

Makefile

all: main_
main_.cu:main.cu
	cp main.cu main_.cu

main_.o:main_.cu
	nvcc $< -c --keep

main_:main_.o
	nvcc $< -o $@

.PHONY:clean
clean:
	-rm -f main_*

step2,  一个 API 函数的动态链接库 Makefile 版本

文件结构和内容稍微做了一些改变,在 libicmm.so的cuda 和cpp代码中暂时没有使用 模板。

文件目录如下:

一个完整的cuda动态链接库工程 01记_第1张图片

包括两个Makefile在内,涉及到7个源文件,从上到下现罗列如下,假设顶层目录为icmm_top/

内含

icmm_top/bin

icmm_top/gpu/add.cu

#include 
#include 

__global__ void vector_add_kernel(float *A, float *B, float *C, int n)
{
  int i = blockDim.x * blockIdx.x + threadIdx.x;

  if (i < n)
  {
    C[i] = A[i] + B[i] + 0.0f;
  }
}

extern "C"  void  vector_add_gpu(float *A, float *B, float *C, int n)
{
  dim3 grid, block;

  block.x = 256;
  grid.x = (n + block.x - 1) / block.x;
  printf("CUDA kernel launch with %d blocks of %d threads\n", grid.x, block.x);

  vector_add_kernel<<>>(A, B, C, n);
}

icmm_top/gpu/add.h

#pragma once

extern "C"  void  vector_add_gpu(float *A, float *B, float *C, int n);

icmm_top/include/ic_add.h


#pragma once
#include

void hello_print();
void ic_add(float* A, float* B, float *C, int n);

icmm_top/makefile_bin

# executable
TARGET = test
all: $(TARGET)

add.o: gpu/add.cu
	nvcc -dc -rdc=true  -arch=sm_70 -c gpu/add.cu

add_link.o: add.o
	nvcc   -arch=sm_70 -dlink   -o add_link.o  add.o  -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt

ic_add.o: src/ic_add.cpp
	g++ -c src/ic_add.cpp  -L/usr/local/cuda-11.4/lib64 -I/usr/local/cuda-11.4/include -lcudart -lcudadevrt -I./

test.o: testing/test.cpp
	g++ -c testing/test.cpp -I/usr/local/cuda-11.4/include -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt -I./include

test: add.o ic_add.o test.o add_link.o
	g++ add.o ic_add.o test.o add_link.o -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt   -o test
	cp ./test ./bin/

.PHONY:clean
clean:
	-rm -f *.o bin/* $(TARGET)

icmm_top/Makefile

#libicmm.so

TARGETS = libicmm.so

all: $(TARGETS)

add.o: gpu/add.cu
	nvcc    -Xcompiler -fPIC -arch=sm_70 -c $<
#-dc
#-rdc=true

add_link.o: add.o
	nvcc   -Xcompiler -fPIC   -arch=sm_70 -dlink   -o $@  $<  -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt

ic_add.o: src/ic_add.cpp
	g++ -fPIC -c $<  -L/usr/local/cuda-11.4/lib64 -I/usr/local/cuda-11.4/include -lcudart -lcudadevrt -I./

$(TARGETS): add.o ic_add.o add_link.o
	g++ -shared -fPIC  $^  -o lib/libicmm.so -I/usr/local/cuda-11.4/include -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt 
	-rm -f *.o


.PHONY:clean
clean:
	-rm -f *.o lib/*.so test ./bin/test

icmm_top/src/ic_add.cpp

#include 
#include 
#include "gpu/add.h"
//extern void vector_add_gpu(float *A, float *B, float *C, int n);

void hello_print()
{
  printf("hello world!\n");
}

void ic_add(float* A, float* B, float *C, int n)
{
  vector_add_gpu(A, B, C, n);
}

icmm_top/testing/Makefile

#test

TARGET = test

all: $(TARGET)

CXX_FLAGS = -I/usr/local/cuda-11.4/include -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt  -I../include -L../

test.o: test.cpp
	g++  -c $< $(CXX_FLAGS)

$(TARGET):test.o
	g++ $< -o $@ -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt  -L../lib  -licmm

.PHONY:clean
clean:
	-rm -f *.o $(TARGET)

icmm_top/testing/test.cpp

#include "ic_add.h"
#include 
#include 
#include 
#include 


int main(void)
{
  int n = 50;
  size_t size = n * sizeof(float);

  float *h_A = (float *)malloc(size);
  float *h_B = (float *)malloc(size);
  float *h_C = (float *)malloc(size);

  for (int i = 0; i < n; ++i)
  {
    h_A[i] = 3; // rand() / (float)RAND_MAX;
    h_B[i] = 4; // rand() / (float)RAND_MAX;
  }

  float *d_A = NULL;
  float *d_B = NULL;
  float *d_C = NULL;

  cudaMalloc((void **)&d_A, size);
  cudaMalloc((void **)&d_B, size);
  cudaMalloc((void **)&d_C, size);
  cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
  cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
/*
  int threadsPerBlock = 256;
  int blocksPerGrid = (n + threadsPerBlock - 1) / threadsPerBlock;
  printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);

  vector_add_kernel<<>>(d_A, d_B, d_C, n);
*/

  ic_add(d_A, d_B, d_C, n);

  printf("Copy output data from the CUDA device to the host memory\n");
  cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

  for (int i = 0; i < n; ++i)
  {
    printf("%3.2f ", h_C[i]);
    // if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) {      fprintf(stderr, "Result verification failed at element %d!\n", i);      exit(EXIT_FAILURE);    }
  }

  printf("\nTest PASSED\n");

  cudaFree(d_A);
  cudaFree(d_B);
  cudaFree(d_C);
  free(h_A);
  free(h_B);
  free(h_C);

  printf("Done\n");
  return 0;
}

唯一需要注意的是nvcc用了两次,特别有一次使用了 -dlink 选项:

add.o: gpu/add.cu
    nvcc -dc -rdc=true  -arch=sm_70 -c gpu/add.cu

add_link.o: add.o
    nvcc   -arch=sm_70 -dlink   -o add_link.o  add.o  -L/usr/local/cuda-11.4/lib64 -lcudart -lcudadevrt

运行效果图:

一个完整的cuda动态链接库工程 01记_第2张图片

下一篇内容:

step3, 两个 API 函数的动态链接库 Makefile 版本

step4,  将Makefile 转换成 cmake 自定义版本

你可能感兴趣的:(算法,Linux,cuda)