- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
科研_G.E.M.
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- Linux基础
索然无味io
网络安全linux服务器运维网络安全学习web安全安全
一.Linux主要目录介绍:Linux系统的文件系统遵循类似UNIX的目录结构,根目录(/)是最顶层的目录,下面包含了不同的子目录,承载着系统和应用程序的文件。/(根目录)这是整个文件系统的起点,所有其他目录和文件都从这里开始。任何文件路径的最初部分都会以/开头。/bin存放基础的系统命令和工具,如ls、cp、mv、rm等,这些是系统启动和修复所需的基本工具。/etc存放系统配置文件,如用户信息、
- 前端必知必会-Vue 简介
编程岁月
vue.js前端javascript
文章目录Vue简介Vue是一个JavaScript框架为什么要学习Vue?OptionsAPI我的第一页文本插值文本插值中的JavaScript总结Vue简介Vue是一个JavaScript框架。可以使用标记将其添加到HTML页面。Vue使用指令扩展HTML属性,并使用表达式将数据绑定到HTML。Vue是一个JavaScript框架Vue是一个用JavaScript编写的前端JavaScript框
- 探索未来开发的新起点:NetCore-Boilerplate
侯深业Dorian
探索未来开发的新起点:NetCore-Boilerplatenetcore-boilerplateBoilerplateofAPIin.NET7项目地址:https://gitcode.com/gh_mirrors/ne/netcore-boilerplate是一个强大的、基于.NETCore的现代Web应用模板,它提供了全面的基础架构和最佳实践,为开发者快速启动新的Web项目提供了便利。该项目旨
- 详细介绍:使用 Axios 上传图片文件
还是鼠鼠
javascript前端开发语言ajaxbootstrap前端框架vscode
目录1.项目背景和功能概述2.(index.html完整代码)结构解析3.JavaScript部分解析3.1事件监听和图片上传3.2处理响应和错误4.完整流程5.总结6.适用场景这篇文章将展示如何通过Axios发送POST请求来实现图片上传。通过用户选择图片文件后,使用FormData构造上传的文件数据,并通过Axios将其提交到服务器。服务器返回图片的URL后,页面会显示上传的图片。下面是详细的
- 图书管理系统 Axios 源码 __删除图书功能
还是鼠鼠
javascriptbootstrapajaxvscode前端前端框架node.js
目录代码实现(index.js)代码解析使用方法下面是完整的删除图书功能代码,基于HTML+Bootstrap+JavaScript+Axios开发。代码实现(index.js)//删除图书功能document.querySelector('.list').addEventListener('click',(e)=>{//判断是否点击了删除按钮if(e.target.classList.conta
- Axios 的地区查询(案例)
还是鼠鼠
ajax前端javascriptbootstrapweb
目录1.项目背景与功能概述2.完整代码3.HTML结构解析输入表单查询按钮地区列表4.JavaScript部分解析监听点击事件发送Axios请求处理响应数据5.完整流程6.总结7.适用场景8.优化和扩展本案例展示了如何使用Axios发送带查询参数的HTTP请求,查询指定省份和城市下的地区列表。通过用户输入的省份名称和城市名称,向后端API发送请求,获取该地区下的具体区域信息,并将返回的数据动态渲染
- axios如何利用promise无痛刷新token
前端 贾公子
前端
目录需求需求解析实现思路方法一:方法二:两种方法对比实现封装axios基本骨架instance.interceptors.response.use拦截实现问题和优化如何防止多次刷新token同时发起两个或以上的请求时,其他接口如何重试最后完整代码需求最近遇到个需求:前端登录后,后端返回token和token有效时间,当token过期时要求用旧token去获取新的token,前端需要做到无痛刷新to
- 图书管理系统 Axios 源码__获取图书列表
还是鼠鼠
javascriptbootstrapajax前端
目录核心功能源码介绍1.获取图书列表技术要点适用人群本项目是一个基于HTML+Bootstrap+JavaScript+Axios开发的图书管理系统,可用于添加、编辑、删除和管理图书信息,适合前端开发者学习前端交互设计、Axios数据请求以及Bootstrap样式布局。核心功能图书列表渲染通过Axios发送GET请求获取服务器上的图书数据。渲染数据到HTML表格,展示书籍的名称、作者、出版社等信息
- 一个开源 GenBI AI 本地代理(确保本地数据安全),使数据驱动型团队能够与其数据进行互动,生成文本到 SQL、图表、电子表格、报告和 BI
struggle2025
人工智能数据挖掘目标检测深度学习自然语言处理语言模型集成学习
一、GenBIAI代理介绍(文末提供下载)github地址:https://github.com/Canner/WrenAI本文信息图片均来源于github作者主页在WrenAI,我们的使命是通过生成式商业智能(GenBI)使组织能够无缝访问数据,从而彻底改变商业智能。我们的目标是通过先进的AI驱动型解决方案、可组合数据框架和语义智能来打破数据洞察的障碍,使每个团队成员都能自信地做出更快、更智能的
- Fooocus AI绘画神器兼具Midjourney和Stable Diffusion强大功能,win版本整合包一键运行N卡版(8g内存4g显卡可操作硬盘空间要500g),省去繁琐的安装(A卡改参数)
struggle2025
AI作画midjourneystablediffusion人工智能计算机视觉图像处理
开源AI绘画工具Fooocus使用指南最近,在Github上一款全新的开源AI绘画工具Fooocus横空出世,引发了众多AI绘画爱好者的关注。它不仅能够像StablediffusionWebUI一样部署到本地免费使用,还具备midjourney那般便捷的操作界面,为用户带来了极其出色的创作体验。Foocus重新思考了图像生成器的设计。该软件是离线的,开源的,免费的,同时,类似于许多在线图像生成器,
- 柳暗花明又一村:Seq2Seq编码器解码器架构
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
Seq2Seq,编码器-解码器,自然语言处理,机器翻译,文本生成,循环神经网络,长短期记忆网络1.背景介绍在人工智能领域,自然语言处理(NLP)始终是研究的热点之一。从机器翻译到文本摘要,从对话系统到问答机器人,Seq2Seq编码器-解码器架构在众多NLP任务中展现出强大的能力。传统的机器翻译方法通常依赖于统计模型和规则引擎,难以捕捉语言的复杂性和语义关系。随着深度学习的兴起,Seq2Seq架构为
- sqoop从orc文件到oracle,Sqoop import as OrC file
余革革
问题IsthereanyoptioninsqooptoimportdatafromRDMSandstoreitasORCfileformatinHDFS?Alternativestried:importedastextformatandusedatemptabletoreadinputastextfileandwritetohdfsasorcinhive回答1:AtleastinSqoop1.4.
- 玩转Docker | 使用Docker部署SSCMS内容管理系统
心随_风动
玩转Dockerdocker容器运维
玩转Docker|使用Docker部署SSCMS内容管理系统前言一、项目介绍SSCMS简介主要特点二、系统要求环境要求环境检查Docker版本检查检查操作系统版本三、部署SSCMS系统下载镜像创建容器检查容器状态检查服务端口安全设置四、访问SSCMS应用初始化配置访问SSCMS管理后台六、配置SSCMS站点创建站点配置站点信息访问站点首页七、总结前言在当今数字化快速发展的时代,拥有一个高效、稳定且
- Hadoop---(6)Sqoop(数据传输)
Mr Cao
sqoop大数据
6.SqoopSqoop是一个用于hadoop数据和结构化数据之间转换的工具。全称SQL-TO-HADOOP.它可以把hadoop数据,包括hive和hbase存储的数据转化为结构化数据也就是数据库的数据,也可以把关系型数据库数据转化为hadoop数据这些转换操作全是通过Hadoop的MapTask来完成的,并不会涉及到Reduce操作。这是因为我们只是进行数据的拷贝,并不会对数据进行处理或者计算
- 性能测试中的IO风险诊断有哪些?
Feng.Lee
漫谈测试php服务器前端
应用系统离不开IO(数据读写),IO的读写性能直接影响系统性能,而磁盘IO系统的短板。CPU处理频率较磁盘的物理操作更快几个数量级,CPU从磁盘读取数据和从内存中读取数据的差别是秒到毫秒的区别。IO比较繁忙时,如果IO得不到满足会导致应用的阻塞(也叫IO等待或非空闲等待)。针对IO场景的模型,我们要考虑的有IO的TPS,平均IO数据,平均队列长度,平均服务时间,平均等待时间,IO利用率(磁盘Bus
- Jetson Nano B01 sd卡启动 以及读取sd卡来扩容(换系统)
yuyuyue249
linux服务器
一.读取sd卡来扩容:请先确保JetsonNanoB01是可以正常进入EMMC系统的。step1:下载下载dtb文件(kernel)到JetsonNanoB01并解压,终端输入:unzipNano-dtb-SDMMC.zipstep2:将dtb文件复制到boot目录:终端输入:sudocpkernel_tegra210-p3448-0002-p3449-0000-b00-user-custom-J
- 本地部署DeepSeek 多模态大模型Janus-Pro-7B
网络安全我来了
人工智能AI人工智能
本地部署Janus-Pro-7B的完整指南在今天,AI无处不在,它深刻改变了我们与世界的互动方式。是否曾想过,如何能够将强大的多模态大模型,如DeepSeek的Janus-Pro-7B,部署到本地使其为你所用呢?本篇文章将带你逐步了解Janus-Pro-7B的特点和部署过程,并解决你可能遇到的各种问题。1.Janus-Pro-7B简介1.1模型特点与创新在众多AI模型中,Janus-Pro-7B犹
- Redis基础命令之set、zset
泪染的青空
redis数据库缓存
1.SetRedis的Set是String类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。1.1SADD--添加一个或多个成员这里添加三个成员到set集合中127.0.0.1:6379>SADDsetmysqljavac++(integer)31.2SMEMBERS--查看成员127.0.0.1:6379>SMEMBERSset1)"c++"2)"java"3)"mysql"
- 你怎么比较MongoDB、CouchDB及CouchBase?思维导图 代码示例(java 架构)
用心去追梦
mongodbjava架构
MongoDB、CouchDB和Couchbase是三种流行的NoSQL数据库,它们各自有着独特的设计哲学和技术特点。以下是它们之间的比较,涵盖了架构、数据模型、查询语言、复制机制、扩展性以及其他关键特性。MongoDB、CouchDB及Couchbase比较-思维导图概要您可以创建一个以“MongoDBvs.CouchDBvs.Couchbase”为核心节点的思维导图,并根据以下分类展开:概述简
- docker直接运行arm下的docker
张文君
dockerarm开发容器
运行环境是树莓派A+处理器是arm32v6安装了docker,运行lamp编译安装php的时候发现要按天来算,于是用电脑vm下的Ubuntu系统运行arm的docker然后打包到a+直接导入运行就可以了第一种方法sudoaptinstallqemu-user-static导入直接运行就可以了第二种方法运行arm的dockerwget-chttps://github.com/multiarch/qe
- Causal Inference for Leveraging Image-TextMatching Bias in Multi-Modal Fake NewsDetection
樱花的浪漫
因果推断人工智能计算机视觉语言模型学习机器学习算法
https://ieeexplore.ieee.org/document/9996587https://ieeexplore.ieee.org/document/99965871.概述社交媒体的快速发展为虚假新闻的产生和传播提供了便捷渠道,并带来了诸多不良后果。为了减轻虚假新闻的负面影响,自动化的虚假新闻检测变得尤为重要。随着多媒体技术的发展,社交媒体上的新闻不仅限于文本内容,还逐步转变为包含图像
- 【llm对话系统】大模型 Llama 源码分析之并行训练方案
kakaZhui
llama人工智能AIGCchatgpt
1.引言训练大型语言模型(LLM)需要巨大的计算资源和内存。为了高效地训练这些模型,我们需要采用各种并行策略,将计算和数据分布到多个GPU或设备上。Llama作为当前最流行的开源大模型之一,其训练代码中采用了多种并行技术。本文将深入Llama的训练代码,分析其并行训练方案,主要关注参数并行和部分结构参数共享。2.并行训练策略概述常见的并行训练策略包括:数据并行(DataParallelism,DP
- 使用Qdrant进行矢量相似性搜索的实践
hgSdaegva
pythonwindowslinux
在今天的文章中,我将带你深入了解Qdrant,这是一个生产就绪的矢量相似性搜索引擎,并提供一个便利的API来存储、搜索和管理点。这篇文章重点展示如何使用Qdrant进行自我查询检索,并结合OpenAIEmbeddings进行矢量化处理。技术背景介绍Qdrant是一个专注于矢量相似性搜索的引擎,适用于需要快速检索和过滤的场景。它允许我们通过API轻松地存储和管理矢量数据点,并根据矢量相似性进行高效检
- 使用Elasticsearch和SelfQueryRetriever实现智能电影检索
hgSdaegva
elasticsearchjenkins大数据python
在当今信息爆炸的时代,快速而准确地检索数据变得尤为重要。Elasticsearch是一个强大的分布式搜索和分析引擎,能够高效地处理大量数据。在这篇文章中,我们将结合Elasticsearch和SelfQueryRetriever,展示如何通过语言模型实现智能电影查询。技术背景介绍Elasticsearch提供多租户能力和无模式的JSON文档存储,广泛应用于全文搜索和分析场景。通过将其与语言模型结合
- 使用PGVector进行电影文档的向量搜索
hgSdaegva
python开发语言
在本文中,我们将演示如何使用Postgres数据库中的PGVector包来进行向量相似性搜索。具体而言,我们会展示如何使用PGVector创建一个向量存储,并结合自查询检索器(SelfQueryRetriever)来对电影文档集合进行检索。技术背景介绍PGVector是一个针对Postgres数据库的向量相似性搜索插件。它允许我们在数据库中存储向量并进行快速的相似性检索,非常适合于需要进行语义搜索
- 使用 ChatPremAI 和 LangChain 构建高级聊天模型功能
hgSdaegva
python
##使用ChatPremAI和LangChain构建高级聊天模型功能###技术背景介绍随着生成式AI的快速发展,诸如ChatGPT等大型语言模型逐渐成为开发智能应用的核心组件。然而,如何高效利用这些模型,并将其部署到生产环境中,仍然是开发者面临的一大挑战。ChatPremAI是一款整合所有核心功能的生成式AI平台,通过与LangChain的完美结合,为开发者提供了灵活且功能强大的接口以实现复杂功能
- 【深度学习】因果推断与机器学习的高级实践 数学建模_问题根因 分析 机器学习
2401_84239830
程序员深度学习机器学习数学建模
现阶段深度学习有三大特征:数据驱动:即数据训练,将数据输入到模型中进行训练;关联学习:模型基于给定训练数据集,进行关联学习;概率输出:即最后的输出,判断这个图片有“狗“的概率是多少。以数据驱动、关联学习、概率输出为特征的深度学习存在什么问题呢?以一个简单的图片识别问题为例:识别一张图片中是否有狗。在很多预测问题中,我们拿到的数据集往往都是有偏的,比如我们拿到的数据中有80%的图片中狗都在草地上,这
- Qwen 模型自动构建知识图谱,生成病例 + 评价指标优化策略
2301_79306982
ai千问语言模型人工智能
关于数据库和检索方式的选择AIMedicalConsultantforVisualQuestionAnswering(VQA)系统:更适合在前端使用向量数据库(如FAISS)结合关系型数据库来实现图像和文本的检索与存储。因为在VQA场景中,你需要对患者上传的图像或文本症状进行语义向量化,以便快速查找相似病例或相关医学图像内容;同时用关系型数据库维护患者基础信息和简单的交互记录即可。AI-Power
- 因果推断与机器学习—因果推断入门(1)
樱花的浪漫
因果推断机器学习人工智能计算机视觉搜索引擎深度学习算法
在机器学习被广泛应用于对人类产生巨大影响的场景(如社交网络、电商、搜索引擎等)的今天,因果推断的重要性开始在机器学习社区的论文和演讲中被不断提及。图灵奖得主YoshuaBengio在对系统2(system2,这个说法来自心理学家DanielKahneman的作品,人类大脑由两套系统构成:系统1负责快速思考,做出下意识的反应;系统2则负责比较耗时的思考,如理解事物之间的因果关系)的畅想中强调,在实现
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,