Problem: 1423. 可获得的最大点数
两种算法都可以:
len-k
长度的和 的最小值, 划窗解决, 每次去掉最早的数字加入最右边的数字, 计算出最小剩余和, 目标则为 整体和 - 最小剩余和 ; (rust 实现)见代码
时间复杂度:
O ( n ) O(n) O(n)
空间复杂度:
O ( 1 ) O(1) O(1), C++: O ( n ) O(n) O(n)
刷题学
Rust
语法, 练习迭代器、切片、求和、vector
等;
use std::cmp::min;
// struct Solution {}
impl Solution {
pub fn max_score(card_points: Vec<i32>, k: i32) -> i32 {
let total = card_points.iter().sum();
if card_points.len() as i32 == k {
return total;
}
let remain_cnt = card_points.len() - k as usize;
let mut remain_sum: i32 = card_points[0..remain_cnt].iter().sum();
let mut remain_sum_min = remain_sum;
for i in 1..(k + 1) {
remain_sum += card_points[i as usize - 1 + remain_cnt] - card_points[i as usize - 1];
remain_sum_min = min(remain_sum_min, remain_sum);
}
return total - remain_sum_min;
}
}
#[test]
fn tc1() {
let card_points = vec![1, 2, 3, 4, 5, 6, 1];
let k = 3;
let ans = Solution::max_score(card_points, k);
assert_eq!(ans, 12);
}
#[test]
fn tc2() {
let card_points = vec![2, 2, 2];
let k = 2;
let ans = Solution::max_score(card_points, k);
assert_eq!(ans, 4);
}
#[test]
fn tc3() {
let card_points = vec![9, 7, 7, 9, 7, 7, 9];
let k = 7;
let ans = Solution::max_score(card_points, k);
assert_eq!(ans, 55);
}
#[test]
fn tc4() {
let card_points = vec![1, 1000, 1];
let k = 1;
let ans = Solution::max_score(card_points, k);
assert_eq!(ans, 1);
}
#[test]
fn tc5() {
let card_points = vec![1, 79, 80, 1, 1, 1, 200, 1];
let k = 3;
let ans = Solution::max_score(card_points, k);
assert_eq!(ans, 202);
}
#[test]
fn tc6() {
let card_points = vec![9, 5, 2, 7];
let total = card_points.iter().sum();
let k = card_points.len();
let ans = Solution::max_score(card_points, k as i32);
assert_eq!(ans, total);
}
#[test]
fn tc7() {
let card_points = vec![9, 5, 2, 7];
let k = 1;
let ans = Solution::max_score(card_points, k as i32);
assert_eq!(ans, 9);
}
#[test]
fn tc8() {
let card_points = vec![9, 5, 2, 70];
let k = 1;
let ans = Solution::max_score(card_points, k as i32);
assert_eq!(ans, 70);
}
class Solution {
public:
int maxScore(vector<int>& cardPoints, int k) {
vector<int> headSum(k+1, 0);
vector<int> tailSum(k+1, 0);
for (int i = 1; i <= k; i++) {
headSum[i] = headSum[i-1] + cardPoints[i-1];
}
for (int i=1, j = cardPoints.size()-1; i<=k; i++, j--) {
tailSum[i] = tailSum[i-1] + cardPoints[j];
}
int ans = 0;
for (int i = 0; i <= k; i++) {
ans = max(ans, headSum[i] + tailSum[k-i]);
}
return ans;
}
};