Redis ziplist源码解析

area        |<---- ziplist header ---->|<----------- entries ------------->|<-end->|

size          4 bytes  4 bytes  2 bytes    ?        ?        ?        ?     1 byte
            +---------+--------+-------+--------+--------+--------+--------+-------+
component   | zlbytes | zltail | zllen | entry1 | entry2 |  ...   | entryN | zlend |
            +---------+--------+-------+--------+--------+--------+--------+-------+
            +--------------+------------+---------------+
entry       |    prevlen   |  encoding  | data          | 
            +--------------+------------+---------------+

                       |<-前一项长度 ->|<-当前编码->|<-存储的数据  ->|

编码过程:

entry存储的键值对会根据数据进行转码,尝试转化为整数编码,这样可以节省更多的空间。

各个版本差异比较大,这里参考的是redis3.0版本
/*
 * 整数编码类型
 */
#define ZIP_INT_16B (0xc0 | 0<<4)
#define ZIP_INT_32B (0xc0 | 1<<4)
#define ZIP_INT_64B (0xc0 | 2<<4)
#define ZIP_INT_24B (0xc0 | 3<<4)
#define ZIP_INT_8B 0xfe

/* 4 bit integer immediate encoding 
 *
 * 4 位整数编码的掩码和类型
 */
#define ZIP_INT_IMM_MASK 0x0f
#define ZIP_INT_IMM_MIN 0xf1    /* 11110001 */
#define ZIP_INT_IMM_MAX 0xfd    /* 11111101 */
#define ZIP_INT_IMM_VAL(v) (v & ZIP_INT_IMM_MASK)

/* Check if string pointed to by 'entry' can be encoded as an integer.
 * Stores the integer value in 'v' and its encoding in 'encoding'. 
 *
 * 检查 entry 中指向的字符串能否被编码为整数。
 *
 * 如果可以的话,
 * 将编码后的整数保存在指针 v 的值中,并将编码的方式保存在指针 encoding 的值中。
 *
 * 注意,这里的 entry 和前面代表节点的 entry 不是一个意思。
 *
 * T = O(N)
 */
static int zipTryEncoding(unsigned char *entry, unsigned int entrylen, long long *v, unsigned char *encoding) {
    long long value;

    // 忽略太长或太短的字符串
    if (entrylen >= 32 || entrylen == 0) return 0;

    // 尝试转换
    // T = O(N)
    if (string2ll((char*)entry,entrylen,&value)) {

        /* Great, the string can be encoded. Check what's the smallest
         * of our encoding types that can hold this value. */
        // 转换成功,以从小到大的顺序检查适合值 value 的编码方式
        if (value >= 0 && value <= 12) {
            *encoding = ZIP_INT_IMM_MIN+value;
        } else if (value >= INT8_MIN && value <= INT8_MAX) {
            *encoding = ZIP_INT_8B;
        } else if (value >= INT16_MIN && value <= INT16_MAX) {
            *encoding = ZIP_INT_16B;
        } else if (value >= INT24_MIN && value <= INT24_MAX) {
            *encoding = ZIP_INT_24B;
        } else if (value >= INT32_MIN && value <= INT32_MAX) {
            *encoding = ZIP_INT_32B;
        } else {
            *encoding = ZIP_INT_64B;
        }

        // 记录值到指针
        *v = value;

        // 返回转换成功标识
        return 1;
    }

    // 转换失败
    return 0;
}

缺点:

查找性能差

查找一块连续内存区域,当储存的元素过多时,需要从头到尾去遍历,每一个entry都需要编码过程,十分耗时

/* Find pointer to the entry equal to the specified entry. 
 * 
 * 寻找节点值和 vstr 相等的列表节点,并返回该节点的指针。
 * 
 * Skip 'skip' entries between every comparison. 
 *
 * 每次比对之前都跳过 skip 个节点。
 *
 * Returns NULL when the field could not be found. 
 *
 * 如果找不到相应的节点,则返回 NULL 。
 *
 * T = O(N^2)
 */
unsigned char *ziplistFind(unsigned char *p, unsigned char *vstr, unsigned int vlen, unsigned int skip) {
    int skipcnt = 0;
    unsigned char vencoding = 0;
    long long vll = 0;

    // 只要未到达列表末端,就一直迭代
    // T = O(N^2)
    while (p[0] != ZIP_END) {
        unsigned int prevlensize, encoding, lensize, len;
        unsigned char *q;

        ZIP_DECODE_PREVLENSIZE(p, prevlensize);
        ZIP_DECODE_LENGTH(p + prevlensize, encoding, lensize, len);
        q = p + prevlensize + lensize;

        if (skipcnt == 0) {

            /* Compare current entry with specified entry */
            // 对比字符串值
            // T = O(N)
            if (ZIP_IS_STR(encoding)) {
                if (len == vlen && memcmp(q, vstr, vlen) == 0) {
                    return p;
                }
            } else {
                /* Find out if the searched field can be encoded. Note that
                 * we do it only the first time, once done vencoding is set
                 * to non-zero and vll is set to the integer value. */
                // 因为传入值有可能被编码了,
                // 所以当第一次进行值对比时,程序会对传入值进行解码
                // 这个解码操作只会进行一次
                if (vencoding == 0) {
                    if (!zipTryEncoding(vstr, vlen, &vll, &vencoding)) {
                        /* If the entry can't be encoded we set it to
                         * UCHAR_MAX so that we don't retry again the next
                         * time. */
                        vencoding = UCHAR_MAX;
                    }
                    /* Must be non-zero by now */
                    assert(vencoding);
                }

                /* Compare current entry with specified entry, do it only
                 * if vencoding != UCHAR_MAX because if there is no encoding
                 * possible for the field it can't be a valid integer. */
                // 对比整数值
                if (vencoding != UCHAR_MAX) {
                    // T = O(1)
                    long long ll = zipLoadInteger(q, encoding);
                    if (ll == vll) {
                        return p;
                    }
                }
            }

            /* Reset skip count */
            skipcnt = skip;
        } else {
            /* Skip entry */
            skipcnt--;
        }

        /* Move to next entry */
        // 后移指针,指向后置节点
        p = q + len;
    }

    // 没有找到指定的节点
    return NULL;
}

连锁更新性能问题

更新或者删除某元素时,需要重新计算所需空间大小并且重新分配所需要的空间,性能肯定是不行的。详细请看下面ziplist增加元素的做法,一个 ziplist 元素包括了 prevlen(编码需要改变)、encoding 和实际数据 data 三个部分

/* Insert item at "p". */
/*
 * 根据指针 p 所指定的位置,将长度为 slen 的字符串 s 插入到 zl 中。
 *
 * 函数的返回值为完成插入操作之后的 ziplist
 *
 * T = O(N^2)
 */
static unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {
    // 记录当前 ziplist 的长度
    size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen, prevlen = 0;
    size_t offset;
    int nextdiff = 0;
    unsigned char encoding = 0;
    long long value = 123456789; /* initialized to avoid warning. Using a value
                                    that is easy to see if for some reason
                                    we use it uninitialized. */
    zlentry entry, tail;

    /* Find out prevlen for the entry that is inserted. */
    if (p[0] != ZIP_END) {
        // 如果 p[0] 不指向列表末端,说明列表非空,并且 p 正指向列表的其中一个节点
        // 那么取出 p 所指向节点的信息,并将它保存到 entry 结构中
        // 然后用 prevlen 变量记录前置节点的长度
        // (当插入新节点之后 p 所指向的节点就成了新节点的前置节点)
        // T = O(1)
        entry = zipEntry(p);
        prevlen = entry.prevrawlen;
    } else {
        // 如果 p 指向表尾末端,那么程序需要检查列表是否为:
        // 1)如果 ptail 也指向 ZIP_END ,那么列表为空;
        // 2)如果列表不为空,那么 ptail 将指向列表的最后一个节点。
        unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);
        if (ptail[0] != ZIP_END) {
            // 表尾节点为新节点的前置节点

            // 取出表尾节点的长度
            // T = O(1)
            prevlen = zipRawEntryLength(ptail);
        }
    }

    /* See if the entry can be encoded */
    // 尝试看能否将输入字符串转换为整数,如果成功的话:
    // 1)value 将保存转换后的整数值
    // 2)encoding 则保存适用于 value 的编码方式
    // 无论使用什么编码, reqlen 都保存节点值的长度
    // T = O(N)
    if (zipTryEncoding(s,slen,&value,&encoding)) {
        /* 'encoding' is set to the appropriate integer encoding */
        reqlen = zipIntSize(encoding);
    } else {
        /* 'encoding' is untouched, however zipEncodeLength will use the
         * string length to figure out how to encode it. */
        reqlen = slen;
    }
    /* We need space for both the length of the previous entry and
     * the length of the payload. */
    // 计算编码前置节点的长度所需的大小
    // T = O(1)
    reqlen += zipPrevEncodeLength(NULL,prevlen);
    // 计算编码当前节点值所需的大小
    // T = O(1)
    reqlen += zipEncodeLength(NULL,encoding,slen);

    /* When the insert position is not equal to the tail, we need to
     * make sure that the next entry can hold this entry's length in
     * its prevlen field. */
    // 只要新节点不是被添加到列表末端,
    // 那么程序就需要检查看 p 所指向的节点(的 header)能否编码新节点的长度。
    // nextdiff 保存了新旧编码之间的字节大小差,如果这个值大于 0 
    // 那么说明需要对 p 所指向的节点(的 header )进行扩展
    // T = O(1)
    nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;

    /* Store offset because a realloc may change the address of zl. */
    // 因为重分配空间可能会改变 zl 的地址
    // 所以在分配之前,需要记录 zl 到 p 的偏移量,然后在分配之后依靠偏移量还原 p 
    offset = p-zl;
    // curlen 是 ziplist 原来的长度
    // reqlen 是整个新节点的长度
    // nextdiff 是新节点的后继节点扩展 header 的长度(要么 0 字节,要么 4 个字节)
    // T = O(N)
    zl = ziplistResize(zl,curlen+reqlen+nextdiff);
    p = zl+offset;

    /* Apply memory move when necessary and update tail offset. */
    if (p[0] != ZIP_END) {
        // 新元素之后还有节点,因为新元素的加入,需要对这些原有节点进行调整

        /* Subtract one because of the ZIP_END bytes */
        // 移动现有元素,为新元素的插入空间腾出位置
        // T = O(N)
        memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);

        /* Encode this entry's raw length in the next entry. */
        // 将新节点的长度编码至后置节点
        // p+reqlen 定位到后置节点
        // reqlen 是新节点的长度
        // T = O(1)
        zipPrevEncodeLength(p+reqlen,reqlen);

        /* Update offset for tail */
        // 更新到达表尾的偏移量,将新节点的长度也算上
        ZIPLIST_TAIL_OFFSET(zl) =
            intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);

        /* When the tail contains more than one entry, we need to take
         * "nextdiff" in account as well. Otherwise, a change in the
         * size of prevlen doesn't have an effect on the *tail* offset. */
        // 如果新节点的后面有多于一个节点
        // 那么程序需要将 nextdiff 记录的字节数也计算到表尾偏移量中
        // 这样才能让表尾偏移量正确对齐表尾节点
        // T = O(1)
        tail = zipEntry(p+reqlen);
        if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {
            ZIPLIST_TAIL_OFFSET(zl) =
                intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);
        }
    } else {
        /* This element will be the new tail. */
        // 新元素是新的表尾节点
        ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);
    }

    /* When nextdiff != 0, the raw length of the next entry has changed, so
     * we need to cascade the update throughout the ziplist */
    // 当 nextdiff != 0 时,新节点的后继节点的(header 部分)长度已经被改变,
    // 所以需要级联地更新后续的节点
    if (nextdiff != 0) {
        offset = p-zl;
        // T  = O(N^2)
        zl = __ziplistCascadeUpdate(zl,p+reqlen);
        p = zl+offset;
    }

    /* Write the entry */
    // 一切搞定,将前置节点的长度写入新节点的 header
    p += zipPrevEncodeLength(p,prevlen);
    // 将节点值的长度写入新节点的 header
    p += zipEncodeLength(p,encoding,slen);
    // 写入节点值
    if (ZIP_IS_STR(encoding)) {
        // T = O(N)
        memcpy(p,s,slen);
    } else {
        // T = O(1)
        zipSaveInteger(p,value,encoding);
    }

    // 更新列表的节点数量计数器
    // T = O(1)
    ZIPLIST_INCR_LENGTH(zl,1);

    return zl;
}

你可能感兴趣的:(Redis,redis)