MLP_BinaryClassification
from numpy import vstack
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import random_split
from torch.nn.init import kaiming_uniform_
from torch.nn.init import xavier_uniform_
class CSVDataset(Dataset):
def __init__(self, path):
df = pd.read_csv(path, header=None)
self.X = df.values[:, :-1]
self.y = df.values[:, -1]
self.X = self.X.astype('float32')
self.y = LabelEncoder().fit_transform(self.y)
self.y = self.y.astype('float32')
self.y = self.y.reshape((len(self.y), 1))
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return [self.X[idx], self.y[idx]]
def get_splits(self, n_test=0.33):
test_size = round(n_test * len(self.X))
train_size = len(self.X) - test_size
return random_split(self, [train_size, test_size])
def prepare_data(path):
dataset = CSVDataset(path)
train, test = dataset.get_splits()
train_dl = torch.utils.data.DataLoader(train, batch_size=32, shuffle=True)
test_dl = torch.utils.data.DataLoader(test, batch_size=1024, shuffle=False)
return train_dl, test_dl
class MLP(nn.Module):
def __init__(self, n_inputs):
super(MLP, self).__init__()
self.hidden1 = nn.Linear(n_inputs, 10)
kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')
self.act1 = nn.ReLU()
self.hidden2 = nn.Linear(10, 8)
kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')
self.act2 = nn.ReLU()
self.hidden3 = nn.Linear(8, 1)
xavier_uniform_(self.hidden3.weight)
self.act3 = nn.Sigmoid()
def forward(self, X):
X = self.hidden1(X)
X = self.act1(X)
X = self.hidden2(X)
X = self.act2(X)
X = self.hidden3(X)
X = self.act3(X)
return X
model = MLP(34)
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
def train_model(train_dl, model):
for epoch in range(100):
for i, (inputs, targets) in enumerate(train_dl):
yhat = model(inputs)
loss = criterion(yhat, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
def evaluate_model(test_dl, model):
predictions, actuals = list(), list()
for i, (inputs, targets) in enumerate(test_dl):
yhat = model(inputs)
yhat = yhat.detach().numpy()
actual = targets.numpy()
actual = actual.reshape((len(actual), 1))
yhat = yhat.round()
predictions.append(yhat)
actuals.append(actual)
predictions, actuals = vstack(predictions), vstack(actuals)
acc = accuracy_score(actuals, predictions)
return acc
def predict(row, model):
row = torch.Tensor([row])
yhat = model(row)
yhat = yhat.detach().numpy()
return yhat
if __name__ == '__main__':
path = './ionosphere.csv'
train_dl, test_dl = prepare_data(path)
print(len(train_dl.dataset), len(test_dl.dataset))
model = MLP(34)
train_model(train_dl, model)
acc = evaluate_model(test_dl, model)
print('Accuracy: %.3f' % acc)
row = [1,0,0.99539,-0.05889,0.85243,0.02306,0.83398,-0.37708,1,0.03760,0.85243,-0.17755,0.59755,-0.44945,0.60536,-0.38223,0.84356,-0.38542,0.58212,-0.32192,0.56971,-0.29674,0.36946,-0.47357,0.56811,-0.51171,0.41078,-0.46168,0.21266,-0.34090,0.42267,-0.54487,0.18641,-0.45300]
yhat = predict(row, model)
print('Predicted: %.3f (class=%d)' % (yhat, yhat.round()))
235 116
Accuracy: 0.379
Predicted: 0.464 (class=0)