Flink 自定义Avro序列化(Source/Sink)到kafka中


前言

环境所依赖的pom文件

 
        
            org.apache.avro
            avro
            1.8.2
        

        
            org.apache.flink
            flink-scala_2.12
            1.10.1
        

        
        
            org.apache.flink
            flink-streaming-scala_2.12
            1.10.1
        

        
            org.apache.flink
            flink-connector-kafka-0.11_2.12
            1.10.1
        

        
        
            org.apache.flink
            flink-avro
            1.10.1
        

        
        
            org.apache.kafka
            kafka-clients
            1.0.0
        

        
            org.apache.kafka
            kafka-streams
            1.0.0
        

    

    
        
            
                org.apache.avro
                avro-maven-plugin
                1.8.2
                
                    
                        generate-sources
                        
                            schema
                        

                        
                            ${project.basedir}/src/main/avro/
                            ${project.basedir}/src/main/java/
                        

                    

                

            

            
                org.apache.maven.plugins
                maven-compiler-plugin
                
                    1.6
                    1.6
                

            

        

    

一、Avro提供的技术支持包括以下五个方面:

  • 优秀的数据结构;
  • 一个紧凑的,快速的,二进制数据格式;
  • 一个容器文件,用来存储持久化数据;
  • RPC远程过程调用;
  • 集成最简单的动态语言。读取或者写入数据文件,使用或实现RPC协议均不需要代码实现。对于静态- - 语言编写的话需要实现;

二、Avro优点

  • 二进制消息,性能好/效率高
  • 使用JSON描述模式
  • 模式和数据统一存储,消息自描述,不需要生成stub代码(支持生成IDL)
  • RPC调用在握手阶段交换模式定义
  • 包含完整的客户端/服务端堆栈,可快速实现RPC
  • 支持同步和异步通信
  • 支持动态消息
  • 模式定义允许定义数据的排序(序列化时会遵循这个顺序)
  • 提供了基于Jetty内核的服务基于Netty的服务

三、Avro Json格式介绍

{
    "namespace": "com.avro.bean",
    "type": "record",
    "name": "UserBehavior",
    "fields": [
        {"name": "userId", "type": "long"},
        {"name": "itemId",  "type": "long"},
        {"name": "categoryId", "type": "int"},
        {"name": "behavior", "type": "string"},
        {"name": "timestamp", "type": "long"}
    ]
}
  • namespace : 要生成的目录
  • type :类型 avro 使用 record
  • name : 会自动生成对应的对象
  • fields : 要指定的字段

注意: 创建的文件后缀名一定要叫 avsc

四、使用Java自定义序列化到kafka

         首先我们先使用 Java编写Kafka客户端写入数据和消费数据。

4.1 准备测试数据

543462,1715,1464116,pv,1511658000662867,2244074,1575622,pv,1511658000561558,3611281,965809,pv,1511658000894923,3076029,1879194,pv,1511658000834377,4541270,3738615,pv,1511658000315321,942195,4339722,pv,1511658000625915,1162383,570735,pv,1511658000

4.2 自定义Avro 序列化和反序列化

首先我们需要实现2个类分别为SerializerDeserializer分别是序列化和反序列化

package com.avro.AvroUtil;

import com.avro.bean.UserBehavior;
import org.apache.avro.io.BinaryDecoder;
import org.apache.avro.io.BinaryEncoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serializer;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.Map;

/**
 * @author 大数据老哥
 * @version V1.0
 * @Package com.avro.AvroUtil
 * @File :SimpleAvroSchemaJava.java
 * @date 2021/1/8 20:02 */
/**
 *  自定义序列化和反序列化 */
public class SimpleAvroSchemaJava implements Serializer, Deserializer {
    
    @Override
    public void configure(Map map, boolean b) {

    }
    //序列化方法
    @Override
    public byte[] serialize(String s, UserBehavior userBehavior) {
        // 创建序列化执行器
        SpecificDatumWriter writer = new SpecificDatumWriter(userBehavior.getSchema());
         // 创建一个流 用存储序列化后的二进制文件
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        // 创建二进制编码器
        BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(out, null);
        try {
            // 数据入都流中
            writer.write(userBehavior, encoder);
        } catch (IOException e) {
            e.printStackTrace();
        }

        return out.toByteArray();
    }

    @Override
    public void close() {

    }

    //反序列化
    @Override
    public UserBehavior deserialize(String s, byte[] bytes) {
        // 用来保存结果数据
        UserBehavior userBehavior = new UserBehavior();
        // 创建输入流用来读取二进制文件
        ByteArrayInputStream arrayInputStream = new ByteArrayInputStream(bytes);
        // 创建输入序列化执行器
        SpecificDatumReader stockSpecificDatumReader = new SpecificDatumReader(userBehavior.getSchema());
        //创建二进制解码器
        BinaryDecoder binaryDecoder = DecoderFactory.get().directBinaryDecoder(arrayInputStream, null);
        try {
            // 数据读取
            userBehavior=stockSpecificDatumReader.read(null, binaryDecoder);
        } catch (IOException e) {
            e.printStackTrace();
        }
        // 结果返回
        return userBehavior;
    }
}

4.3 创建序列化对象

package com.avro.kafka;
import com.avro.bean.UserBehavior;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.io.BufferedReader;
import java.io.FileReader;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;

/**
 * @author 大数据老哥
 * @version V1.0
 * @Package com.avro.kafka
 * @File :UserBehaviorProducerKafka.java
 * @date 2021/1/8 20:14 */

public class UserBehaviorProducerKafka {
    public static void main(String[] args) throws InterruptedException {
        // 获取数据
        List data = getData();
        // 创建配置文件
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "192.168.100.201:9092,192.168.100.202:9092,192.168.100.203:9092");
        props.setProperty("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        props.setProperty("value.serializer", "com.avro.AvroUtil.SimpleAvroSchemaJava");
        // 创建kafka的生产者
        KafkaProducer userBehaviorProducer = new KafkaProducer(props);
        // 循环遍历数据
        for (UserBehavior userBehavior : data) {
            ProducerRecord producerRecord = new ProducerRecord("UserBehaviorKafka", userBehavior);
            userBehaviorProducer.send(producerRecord);
            System.out.println("数据写入成功"+data);
            Thread.sleep(1000);
        }
    }

    public static List getData() {
        ArrayList userBehaviors = new ArrayList();
        try {
            BufferedReader br = new BufferedReader(new FileReader(new File("data/UserBehavior.csv")));
            String line = "";
            while ((line = br.readLine()) != null) {
                String[] split = line.split(",");
             userBehaviors.add( new UserBehavior(Long.parseLong(split[0]), Long.parseLong(split[1]), Integer.parseInt(split[2]), split[3], Long.parseLong(split[4])));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
        return userBehaviors;
    }
}

注意:value.serializer 一定要指定我们自己写好的那个反序列化类,负责会无效

4.4 创建反序列化对象

package com.avro.kafka;
import com.avro.bean.UserBehavior;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import java.util.Arrays;
import java.util.Properties;

/**
 * @author 大数据老哥
 * @version V1.0
 * @Package com.avro.kafka
 * @File :UserBehaviorConsumer.java
 * @date 2021/1/8 20:58 */
public class UserBehaviorConsumer {

    public static void main(String[] args) {
        Properties prop = new Properties();
        prop.put("bootstrap.servers", "192.168.100.201:9092,192.168.100.202:9092,192.168.100.203:9092");
        prop.put("group.id", "UserBehavior");
        prop.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        // 设置反序列化类为自定义的avro反序列化类
        prop.put("value.deserializer", "com.avro.AvroUtil.SimpleAvroSchemaJava");
        KafkaConsumer consumer = new KafkaConsumer(prop);
        consumer.subscribe(Arrays.asList("UserBehaviorKafka"));
        while (true) {
            ConsumerRecords poll = consumer.poll(1000);
            for (ConsumerRecord stringStockConsumerRecord : poll) {
                System.out.println(stringStockConsumerRecord.value());
            }
        }
    }
}

4.5 启动运行

创建kafkaTopic 和启动一个消费者

# 创建topic
./kafka-topics.sh --create --zookeeper node01:2181,node02:2181,node03:2181 --replication-factor 2 --partitions 3 --topic UserBehaviorKafka
# 模拟消费者
./kafka-console-consumer.sh --from-beginning --topic UserBehaviorKafka --zookeeper node01:2181,node02:2node03:2181

五、Flink 实现Avro自定义序列化到Kafka

         到这里好多小伙们就说我Java实现了那Flink 不就改一下Consumer 和Producer 不就完了吗?

5.1 准备数据

543462,1715,1464116,pv,1511658000662867,2244074,1575622,pv,1511658000561558,3611281,965809,pv,1511658000894923,3076029,1879194,pv,1511658000834377,4541270,3738615,pv,1511658000315321,942195,4339722,pv,1511658000625915,1162383,570735,pv,1511658000

5.2 创建Flink自定义Avro序列化和反序列化


package com.avro.AvroUtil;

import com.avro.bean.UserBehavior;
import com.typesafe.sslconfig.ssl.FakeChainedKeyStore;
import org.apache.avro.io.BinaryDecoder;
import org.apache.avro.io.BinaryEncoder;
import org.apache.avro.io.DecoderFactory;
import org.apache.avro.io.EncoderFactory;
import org.apache.avro.specific.SpecificDatumReader;
import org.apache.avro.specific.SpecificDatumWriter;
import org.apache.flink.api.common.serialization.DeserializationSchema;
import org.apache.flink.api.common.serialization.SerializationSchema;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serializer;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.util.Map;

/**
 * @author 大数据老哥
 * @version V1.0
 * @Package com.avro.AvroUtil
 * @File :SimpleAvroSchemaFlink.java
 * @date 2021/1/8 20:02 */

/**
 *  自定义序列化和反序列化 */
public class SimpleAvroSchemaFlink implements DeserializationSchema, SerializationSchema {

 
    @Override
    public byte[] serialize(UserBehavior userBehavior) {
        // 创建序列化执行器
        SpecificDatumWriter writer = new SpecificDatumWriter(userBehavior.getSchema());
        // 创建一个流 用存储序列化后的二进制文件
        ByteArrayOutputStream out = new ByteArrayOutputStream();
        // 创建二进制编码器
        BinaryEncoder encoder = EncoderFactory.get().directBinaryEncoder(out, null);
        try {
            // 数据入都流中
            writer.write(userBehavior, encoder);
        } catch (IOException e) {
            e.printStackTrace();
        }

        return out.toByteArray();
    }

    @Override
    public TypeInformation getProducedType() {
      return TypeInformation.of(UserBehavior.class);
    }

    @Override
    public UserBehavior deserialize(byte[] bytes) throws IOException {
        // 用来保存结果数据
        UserBehavior userBehavior = new UserBehavior();
        // 创建输入流用来读取二进制文件
        ByteArrayInputStream arrayInputStream = new ByteArrayInputStream(bytes);
        // 创建输入序列化执行器
        SpecificDatumReader stockSpecificDatumReader = new SpecificDatumReader(userBehavior.getSchema());
        //创建二进制解码器
        BinaryDecoder binaryDecoder = DecoderFactory.get().directBinaryDecoder(arrayInputStream, null);
        try {
            // 数据读取
            userBehavior=stockSpecificDatumReader.read(null, binaryDecoder);
        } catch (IOException e) {
            e.printStackTrace();
        }
        // 结果返回
        return userBehavior;
    }

    @Override
    public boolean isEndOfStream(UserBehavior userBehavior) {
        return false;
    }
}

5.3 创建Flink Comsumer 反序列化

package com.avro.FlinkKafka

import com.avro.AvroUtil.{SimpleAvroSchemaFlink}
import com.avro.bean.UserBehavior
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011

import java.util.Properties

/**
 * @Package com.avro.FlinkKafka
 * @File :UserBehaviorConsumerFlink.java
 * @author 大数据老哥
 * @date 2021/1/8 21:18
 * @version V1.0 */
object UserBehaviorConsumerFlink {
  def main(args: Array[String]): Unit = {
    //1.构建流处理运行环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1) // 设置并行度1 方便后面测试
    // 2.设置kafka 配置信息
    val prop = new Properties
    prop.put("bootstrap.servers", "192.168.100.201:9092,192.168.100.202:9092,192.168.100.203:9092")
    prop.put("group.id", "UserBehavior")
    prop.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    // 设置反序列化类为自定义的avro反序列化类
    prop.put("value.deserializer", "com.avro.AvroUtil.SimpleAvroSchemaFlink")

    //    val kafka: FlinkKafkaConsumer011[String] =  new FlinkKafkaConsumer011[String]("UserBehaviorKafka", new SimpleStringSchema(), prop)
    // 3.构建Kafka 连接器
    val kafka: FlinkKafkaConsumer011[UserBehavior] = new FlinkKafkaConsumer011[UserBehavior]("UserBehavior", new SimpleAvroSchemaFlink(), prop)

    //4.设置Flink层最新的数据开始消费
    kafka.setStartFromLatest()
    //5.基于kafka构建数据源
    val data: DataStream[UserBehavior] = env.addSource(kafka)
    //6.结果打印
    data.print()
    env.execute("UserBehaviorConsumerFlink")
  }
}

5.4 创建Flink Producer 序列化

package com.avro.FlinkKafka

import com.avro.AvroUtil.SimpleAvroSchemaFlink
import com.avro.bean.UserBehavior
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011

import java.util.Properties

/**
 * @Package com.avro.FlinkKafka
 * @File :UserBehaviorProducerFlink.java
 * @author 大数据老哥
 * @date 2021/1/8 21:38
 * @version V1.0 */
object UserBehaviorProducerFlink {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val value = env.readTextFile("./data/UserBehavior.csv")
    val users: DataStream[UserBehavior] = value.map(row => {
      val arr = row.split(",")
      val behavior = new UserBehavior()
      behavior.setUserId(arr(0).toLong)
      behavior.setItemId(arr(1).toLong)
      behavior.setCategoryId(arr(2).toInt)
      behavior.setBehavior(arr(3))
      behavior.setTimestamp(arr(4).toLong)
      behavior
    })
    val prop = new Properties()
    prop.setProperty("bootstrap.servers", "node01:9092,node02:9092,node03:9092")
    //4.连接Kafka
    val producer: FlinkKafkaProducer011[UserBehavior] = new FlinkKafkaProducer011[UserBehavior]("UserBehaviorKafka", new SimpleAvroSchemaFlink(), prop)
    //5.将数据打入kafka
    users.addSink(producer)
    //6.执行任务
    env.execute("UserBehaviorProducerFlink")
  }
}

5.5 启动运行

需要源码的请去GitHub 自行下载  https://github.com/lhh2002/Flink_Avro

小结

          其实我在实现这个功能的时候也是蒙的,不会难道就不学了吗,肯定不是呀。我在5.2提出的那个问题的时候其实是我自己亲身经历过的。首先遇到了问题不要想着怎么放弃,而是想想怎么解决,当时我的思路看源码看别人写的。最后经过不懈的努力也终成功了,我在这里为大家提供Flink面试题需要的朋友可以去下面GitHub去下载,信自己,努力和汗水总会能得到回报的。我是大数据老哥,我们下期见~~~

资源获取 获取Flink面试题,Spark面试题,程序员必备软件,hive面试题,Hadoop面试题,Docker面试题,简历模板等资源请去

GitHub自行下载 https://github.com/lhh2002/Framework-Of-BigData

Gitee 自行下载 https://gitee.com/li_hey_hey/Framework-Of-BigData

你可能感兴趣的:(Flink 自定义Avro序列化(Source/Sink)到kafka中)