Selective Search

参考https://blog.csdn.net/guoyunfei20/article/details/78723646

论文考虑了颜色、纹理、尺寸和空间交叠这4个参数
3.1、颜色相似度(color similarity)
将色彩空间转为HSV,每个通道下以bins=25计算直方图,这样每个区域的颜色直方图有25*3=75个区间。 对直方图除以区域尺寸做归一化后使用下式计算相似度:

3.2、纹理相似度(texture similarity)

论文采用方差为1的高斯分布在8个方向做梯度统计,然后将统计结果(尺寸与区域大小一致)以bins=10计算直方图。直方图区间数为8310=240(使用RGB色彩空间)。

其中,

是直方图中第

个bin的值。

3.3、尺寸相似度(size similarity)

保证合并操作的尺度较为均匀,避免一个大区域陆续“吃掉”其他小区域。

例:设有区域a-b-c-d-e-f-g-h。较好的合并方式是:ab-cd-ef-gh -> abcd-efgh -> abcdefgh。 不好的合并方法是:ab-c-d-e-f-g-h ->abcd-e-f-g-h ->abcdef-gh -> abcdefgh。

3.4、交叠相似度(shape compatibility measure)

3.5、最终的相似度


在OpenCV的contrib模块中实现了selective search算法。类定义为:

cv::ximgproc::segmentation::SelectiveSearchSegmentation

你可能感兴趣的:(Selective Search)