The summation(n, term)
function from the higher-order functions lecture adds up term(1) + ... + term(n)
. Write a similar function called product
that returns term(1) * ... * term(n)
.
def product(n, term):
"""Return the product of the first n terms in a sequence.
n -- a positive integer
term -- a function that takes one argument to produce the term
>>> product(3, identity) # 1 * 2 * 3
6
>>> product(5, identity) # 1 * 2 * 3 * 4 * 5
120
>>> product(3, square) # 1^2 * 2^2 * 3^2
36
>>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2
14400
>>> product(3, increment) # (1+1) * (2+1) * (3+1)
24
>>> product(3, triple) # 1*3 * 2*3 * 3*3
162
"""
"*** YOUR CODE HERE ***"
from operator import add, mul, sub
square = lambda x: x * x
identity = lambda x: x
triple = lambda x: 3 * x
increment = lambda x: x + 1
HW_SOURCE_FILE=__file__
def product(n, term):
"""Return the product of the first n terms in a sequence.
n -- a positive integer
term -- a function that takes one argument to produce the term
>>> product(3, identity) # 1 * 2 * 3
6
>>> product(5, identity) # 1 * 2 * 3 * 4 * 5
120
>>> product(3, square) # 1^2 * 2^2 * 3^2
36
>>> product(5, square) # 1^2 * 2^2 * 3^2 * 4^2 * 5^2
14400
>>> product(3, increment) # (1+1) * (2+1) * (3+1)
24
>>> product(3, triple) # 1*3 * 2*3 * 3*3
162
"""
sum=1
while n>0:
sum*=term(n)
n-=1
return sum
Let's take a look at how summation
and product
are instances of a more general function called accumulate
:
def accumulate(combiner, base, n, term):
"""Return the result of combining the first n terms in a sequence and base.
The terms to be combined are term(1), term(2), ..., term(n). combiner is a
two-argument commutative function.
>>> accumulate(add, 0, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5
15
>>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5
26
>>> accumulate(add, 11, 0, identity) # 11
11
>>> accumulate(add, 11, 3, square) # 11 + 1^2 + 2^2 + 3^2
25
>>> accumulate(mul, 2, 3, square) # 2 * 1^2 * 2^2 * 3^2
72
>>> accumulate(lambda x, y: x + y + 1, 2, 3, square)
19
>>> accumulate(lambda x, y: 2 * (x + y), 2, 3, square)
58
>>> accumulate(lambda x, y: (x + y) % 17, 19, 20, square)
16
"""
"*** YOUR CODE HERE ***"
accumulate
has the following parameters:
term
and n
: the same parameters as in summation
and product
combiner
: a two-argument function that specifies how the current term is combined with the previously accumulated terms.base
: value at which to start the accumulation.For example, the result of accumulate(add, 11, 3, square)
is
11 + square(1) + square(2) + square(3) = 25
Note: You may assume that
combiner
is commutative. That is,combiner(a, b) == combiner(b, a)
for alla
,b
, andc
. However, you may not assumecombiner
is chosen from a fixed function set and hard-code the solution.
After implementing accumulate
, show how summation
and product
can both be defined as simple calls to accumulate
:
def summation_using_accumulate(n, term):
"""Returns the sum of term(1) + ... + term(n). The implementation
uses accumulate.
>>> summation_using_accumulate(5, square)
55
>>> summation_using_accumulate(5, triple)
45
>>> from construct_check import check
>>> # ban iteration and recursion
>>> check(HW_SOURCE_FILE, 'summation_using_accumulate',
... ['Recursion', 'For', 'While'])
True
"""
"*** YOUR CODE HERE ***"
def product_using_accumulate(n, term):
"""An implementation of product using accumulate.
>>> product_using_accumulate(4, square)
576
>>> product_using_accumulate(6, triple)
524880
>>> from construct_check import check
>>> # ban iteration and recursion
>>> check(HW_SOURCE_FILE, 'product_using_accumulate',
... ['Recursion', 'For', 'While'])
True
"""
"*** YOUR CODE HERE ***"
def accumulate(combiner, base, n, term):
"""Return the result of combining the first n terms in a sequence and base.
The terms to be combined are term(1), term(2), ..., term(n). combiner is a
two-argument commutative function.
>>> accumulate(add, 0, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5
15
>>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5
26
>>> accumulate(add, 11, 0, identity) # 11
11
>>> accumulate(add, 11, 3, square) # 11 + 1^2 + 2^2 + 3^2
25
>>> accumulate(mul, 2, 3, square) # 2 * 1^2 * 2^2 * 3^2
72
>>> accumulate(lambda x, y: x + y + 1, 2, 3, square)
19
>>> accumulate(lambda x, y: 2 * (x + y), 2, 3, square)
58
>>> accumulate(lambda x, y: (x + y) % 17, 19, 20, square)
16
"""
"*** YOUR CODE HERE ***"
k=1
while n>=k:
base=combiner(base, term(k))
k+=1
return base
def summation_using_accumulate(n, term):
"""Returns the sum of term(1) + ... + term(n). The implementation
uses accumulate.
>>> summation_using_accumulate(5, square)
55
>>> summation_using_accumulate(5, triple)
45
>>> from construct_check import check
>>> # ban iteration and recursion
>>> check(HW_SOURCE_FILE, 'summation_using_accumulate',
... ['Recursion', 'For', 'While'])
True
"""
"*** YOUR CODE HERE ***"
return accumulate(add,0,n,term)
def product_using_accumulate(n, term):
"""An implementation of product using accumulate.
>>> product_using_accumulate(4, square)
576
>>> product_using_accumulate(6, triple)
524880
>>> from construct_check import check
>>> # ban iteration and recursion
>>> check(HW_SOURCE_FILE, 'product_using_accumulate',
... ['Recursion', 'For', 'While'])
True
"""
"*** YOUR CODE HERE ***"
return accumulate(mul,1,n,term)
Implement the function make_repeater
so that make_repeater(func, n)(x)
returns func(func(...func(x)...))
, where func
is applied n
times. That is, make_repeater(func, n)
returns another function that can then be applied to another argument. For example, make_repeater(square, 3)(42)
evaluates to square(square(square(42)))
.
def make_repeater(func, n):
"""Return the function that computes the nth application of func.
>>> add_three = make_repeater(increment, 3)
>>> add_three(5)
8
>>> make_repeater(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1
243
>>> make_repeater(square, 2)(5) # square(square(5))
625
>>> make_repeater(square, 4)(5) # square(square(square(square(5))))
152587890625
>>> make_repeater(square, 0)(5) # Yes, it makes sense to apply the function zero times!
5
"""
"*** YOUR CODE HERE ***"
For an extra challenge, try defining
make_repeater
usingcompose1
and youraccumulate
function in a single one-line return statement.
def compose1(func1, func2):
"""Return a function f, such that f(x) = func1(func2(x))."""
def f(x):
return func1(func2(x))
return f
def accumulate(combiner, base, n, term):
"""Return the result of combining the first n terms in a sequence and base.
The terms to be combined are term(1), term(2), ..., term(n). combiner is a
two-argument commutative function.
>>> accumulate(add, 0, 5, identity) # 0 + 1 + 2 + 3 + 4 + 5
15
>>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5
26
>>> accumulate(add, 11, 0, identity) # 11
11
>>> accumulate(add, 11, 3, square) # 11 + 1^2 + 2^2 + 3^2
25
>>> accumulate(mul, 2, 3, square) # 2 * 1^2 * 2^2 * 3^2
72
>>> accumulate(lambda x, y: x + y + 1, 2, 3, square)
19
>>> accumulate(lambda x, y: 2 * (x + y), 2, 3, square)
58
>>> accumulate(lambda x, y: (x + y) % 17, 19, 20, square)
16
"""
"*** YOUR CODE HERE ***"
k=1
while n>=k:
base=combiner(base, term(k))
k+=1
return base
def compose1(func1, func2):
"""Return a function f, such that f(x) = func1(func2(x))."""
def f(x):
return func1(func2(x))
return f
def make_repeater(func, n):
"""Return the function that computes the nth application of func.
>>> add_three = make_repeater(increment, 3)
>>> add_three(5)
8
>>> make_repeater(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1
243
>>> make_repeater(square, 2)(5) # square(square(5))
625
>>> make_repeater(square, 4)(5) # square(square(square(square(5))))
152587890625
>>> make_repeater(square, 0)(5) # Yes, it makes sense to apply the function zero times!
5
"""
"*** YOUR CODE HERE ***"
return accumulate(compose1,identity,n,lambda _: func)
This question is out of scope for 61a. Do it if you want an extra challenge or some practice with HOF and abstraction!
The logician Alonzo Church invented a system of representing non-negative integers entirely using functions. The purpose was to show that functions are sufficient to describe all of number theory: if we have functions, we do not need to assume that numbers exist, but instead we can invent them.
Your goal in this problem is to rediscover this representation known as Church numerals. Here are the definitions of zero
, as well as a function that returns one more than its argument:
def zero(f):
return lambda x: x
def successor(n):
return lambda f: lambda x: f(n(f)(x))
First, define functions one
and two
such that they have the same behavior as successor(zero)
and successsor(successor(zero))
respectively, but do not call successor
in your implementation.
Next, implement a function church_to_int
that converts a church numeral argument to a regular Python integer.
Finally, implement functions add_church
, mul_church
, and pow_church
that perform addition, multiplication, and exponentiation on church numerals.
def one(f):
"""Church numeral 1: same as successor(zero)"""
"*** YOUR CODE HERE ***"
def two(f):
"""Church numeral 2: same as successor(successor(zero))"""
"*** YOUR CODE HERE ***"
three = successor(two)
def church_to_int(n):
"""Convert the Church numeral n to a Python integer.
>>> church_to_int(zero)
0
>>> church_to_int(one)
1
>>> church_to_int(two)
2
>>> church_to_int(three)
3
"""
"*** YOUR CODE HERE ***"
def add_church(m, n):
"""Return the Church numeral for m + n, for Church numerals m and n.
>>> church_to_int(add_church(two, three))
5
"""
"*** YOUR CODE HERE ***"
def mul_church(m, n):
"""Return the Church numeral for m * n, for Church numerals m and n.
>>> four = successor(three)
>>> church_to_int(mul_church(two, three))
6
>>> church_to_int(mul_church(three, four))
12
"""
"*** YOUR CODE HERE ***"
def pow_church(m, n):
"""Return the Church numeral m ** n, for Church numerals m and n.
>>> church_to_int(pow_church(two, three))
8
>>> church_to_int(pow_church(three, two))
9
"""
"*** YOUR CODE HERE ***"