二阶变系数线性微分方程

1、变量替换法

欧拉方程

a_{0}x^{n}\frac{d^{n}y}{d^{n}x}+a_{1}x^{n-1}\frac{d^{n-1}y}{d^{n-1}x}+.......a_{n-1}x\frac{dy}{dx}+a_{n}y=f(x)

a_{0},a_{1},.....a_{n}是常数,f(x)是已知的函数。

二阶欧拉方程

a_{0}x^{2}\frac{d^{2}y}{d^{2}x}+a_{1}x\frac{dy}{dx}+a_{3}y=f(x)  (1)

x>0时,令x=e^{t},则t=lnx

\frac{dy}{dx}=\frac{dy}{dt}\frac{dt}{dx}=\frac{dy}{dt}\frac{1}{x}

\frac{d^{2}y}{dx^{2}}=\frac{d^{2}y}{dt^{2}}\frac{dt}{dx}=\frac{dy}{dt}\frac{1}{x}+\frac{dy}{dt}\frac{-1}{x^{2}}=(\frac{dy}{dx}-\frac{dy}{dt})\frac{1}{x^{2}}

代入(1)中,

a_{0}\frac{d^{2}y}{dt^{2}}-a_{0}\frac{dy}{dt}+a_{1}\frac{dy}{dt}+a_{2}y=f(e^{t})

a_{0}\frac{d^{2}y}{dt^{2}}+(a_{1}-a_{0})\frac{dy}{dt}+a_{2}y=f(e^{t}).这样就把欧拉方程,化成了二阶常系数非齐次微分方程

当x<0时,令x=-e^{t}t=ln(-x)=ln|x|

a_{0}\frac{d^{2}y}{dt^{2}}-a_{0}\frac{dy}{dt}+a_{1}\frac{dy}{dt}+a_{2}y=f(-e^{t})

 例题

x^{2}\frac{d^{2}y}{dt^{2}}+x\frac{dy}{dt}=6lnx-\frac{1}{x}

解:令x=e^{t},则t=lnx

代入上面的推导得

\frac{d^{2}y}{dt^{2}}=6t-e^{-t}

\frac{dy}{dt}=3t^{2}+e^{-t}+C_{1}

y=t^{3}-e^{-t}+C_{1}t+C_{2}

所以

y=(lnx)^{3}-\frac{1}{x}+C_{1}lnx+C_{2}

2、降阶法

\frac{d^{2}y}{dt^{2}}+p(x)\frac{dy}{dt}+q(x)y=0 (1)

齐次线性微分方程都是有解的

设(1)有一个已经的非零解y_{1}

令y=y_{1}u,其中u=u(x)是一个待定函数。

y^{'}=y^{'}_{1}u+y_{1}u^{'}

y^{''}=y^{''}_{1}u+2y^{'}_{1}u^{'}+y_{1}u^{''}

代入(1)

y_{1}u^{''}+(2y^{'}_{1}+py_{1})u^{'}+(y^{''}_{1}+py^{'}_{1}+qy_{1})u=0

因为y_{1}是解,代入(1)中,公式恒成立,所以

y^{''}_{1}+py^{'}_{1}+qy_{1}=0 成立

所以

y_{1}u^{''}+(2y^{'}_{1}+py_{1})u^{'}=0

转换成一个以u为函数,x自变量的二阶微分方程。

阶数没有阶,再次引入新的变量

z=u^{'}

y_{1}\frac{dz}{dx}=-(2y^{'}_{1}+py_{1})z

转换成一个以z为函数,x自变量的一阶可分离变量方程。

\frac{dz}{z}=-2\frac{dy_{1}}{y_{1}}-pdx

两边求积分

ln|z|=-2ln|y_{1}|-\int p(x)dx+ln|C_{2}|

ln|z|=ln|\frac{1}{y_{1}^{2}}|-lne^{-\int p(x)dx}+ln|C_{2}|

z=\frac{C_{2}}{y^{2}_{1}}e^{-\int p(x)dx}  z=0 也是解,即C_{2}=0的情形

所以u=C_{1}+C_{2}\int \frac{1}{y^{2}_{1}}e^{-\int p(x)dx}

所以(1)的通解为y=y_{1}[C_{1}+C_{2}\int \frac{1}{y^{2}_{1}}e^{-\int p(x)dx}]

刘维尔公式

你可能感兴趣的:(算法,机器学习,人工智能)