JVM简单了解内存溢出

JVM

oracle官网文档:https://docs.oracle.com/en/java/javase/index.html

什么是JVM

JVM(Java Virtual Machine)原名Java虚拟机,是一个可以执行Java字节码的虚拟计算机。它的作用是在不同平台上实现Java程序的跨平台运行,即使在不同的硬件和操作系统上也能保持一致的行为。

JVM的结构和组成

JVM由类加载器、执行引擎、内存区域、本地方法接口等组成。

  1. 类加载器(ClassLoader):负责将java类文件加载到JVM中。Java类的加载过程分为加载、连接和初始化三个阶段。在加载阶段,类加载器将字节码文件加载到JVM中,并生成一个唯一的类标识符(Class Identifier)来代表该类。在连接阶段,JVM会将类的字节码文件校验、准备和解析为可以被JVM使用的数据结构。在初始化阶段,JVM会执行类的静态代码块,完成类的初始化工作。
  2. 执行引擎(Execution Engine):负责执行Java字节码文件。它将字节码文件解释为机器码或直接编译成本地代码来执行。在执行过程中,执行引擎会通过调用Java类库中的方法来实现不同的功能。
  3. 内存区域(Memory Area):JVM将内存划分为不同的区域,用于存放不同类型的数据。主要包括程序计数器、虚拟机栈、本地方法栈、堆区、方法区等。程序计数器用于记录当前线程执行的字节码指令的地址;虚拟机栈用于存放方法的调用栈帧,以及方法参数、局部变量等数据;本地方法栈用于支持本地方法的执行;堆区用于存放对象实例和数组等数据;方法区用于存储类的信息、常量池、静态变量、即时编译器编译后的代码等数据。
  4. 本地方法接口(Native Interface):允许Java代码调用本地代码。本地代码是指使用其他语言编写的代码,例如C、C++等。Java程序可以通过本地方法接口调用本地代码,实现更高效的计算和与外部系统的交互。

虚拟机类加载机制

Java虚拟机把描述类的数据从Class文件加载到内存,并对数据进行校验、转换解析和初始化,最终形成可以被虚拟机直接使用的Java类型,这个过程被称为虚拟机的类加载机制。

类加载器

Java虚拟机设计团队有意把类加载阶段中的“通过一个类的全限定名称来获取描述该类的二进制字节流”这个动作放到Java虚拟机外部实现,以便让应用程序自己决定如何去获取所需的类。实现这个动作的代码被称为“类加载器”(Class Loader)。

类和类加载器

对于任意一个类,都必须由类加载器和这个类本身一起共同确定其在Java虚拟机的唯一性,每一个类加载器,都拥有一个独立的类名称空间。意思是:比较两个类是否“相等”,只要这两个类是由同一个类加载器加载的前提下才有意义,否则,即使这两个类来源同一个Class文件,被同一个Java虚拟机加载,只要加载他们的类加载器不同,那这两个类必然不相等。

相等包括Class对象的equals()方法、isAssignableFrom()方法、isInstance()方法的返回结果,也包括使用instanceof关键字作为对象所属关系判定等多种情况。

/**
 * 类加载器和instanceof
 */
public class ClassLoaderTest {

    public static void main(String[] args) throws Exception {
        ClassLoader myClassLoader = new ClassLoader() {
            @Override
            public Class<?> loadClass(String name) throws ClassNotFoundException {

                String fileName = name.substring(name.lastIndexOf(".") + 1)  + ".class";
                InputStream is = getClass().getResourceAsStream(fileName);
                if (is == null){
                    System.out.println("资源没有读取到");// // ClassLoaderTest之后还会加载java.lang.Object、java.lang.ClassLoader、匿名内部类加载(能找到)
                    return super.loadClass(name);
                }
                try {
                    byte[] b = new byte[is.available()];
                    is.read(b);
                    return defineClass(name,b,0,b.length);
                } catch (IOException e) {
                    throw new RuntimeException(e);
                }

            }
        };
        Object obj = myClassLoader.loadClass("org.javaboy.vhr.ClassLoaderTest").newInstance();
        System.out.println(obj.getClass());
        System.out.println(obj instanceof org.javaboy.vhr.ClassLoaderTest);
    }
}

双亲委派模型

站在Java虚拟机的角度来看,只存在两种不同的类加载器:一种是启动类加载器(Bootstrap ClassLoader),这个类加载使用C++语言实现(HotSpot书281),是虚拟机的一部分;另外一种就是其他的所有的类加载器,这些类加载器都是由Java语言实现,独立存在于虚拟机外部,并且全部继承自抽象类java.lang.ClassLoader。

自JDK1.2以来,Java一直保持者三层类加载器、双亲委派的类加载结构,尽管这套架构在Java模块化系统出现后有了一些调整变动,但依然没有改变其主体结构。

JDK8及之前版本所使用的三层类加载器:

  1. 启动类加载器(Bootstrap Class Loader):这个类加载器负责加载存放在\lib目录,或者-Xbootclasspath参数所指定的路径中存放的,而且是Java虚拟机能够识别的(按照文件名识别,如rt.jar、tools.jar,名字不符合的类库即使放到lib目录下也不会被加载)类库加载到虚拟机的内存中。启动类加载器无法被Java程序直接引用,用户在编写自定义类加载器时,如果需要把请求给启动类加载器去处理,那么直接使用null代替即可。
  2. 扩展类加载器(Extension Class Loader):这个类加载器时在类sun.misc.Launcher$ExtClassLoader中以Java代码实现。负责加载\lib\ext目录中或者被java.ext.dirs系统变量所指定的路劲中的所有类库。
  3. 应用程序类加载器(Application Class Loader):这个类加载器时由sun.miscLauncher$AppClassLoader来实现。负责加载classpath或java.class.path指定目录的类库。这个类加载器是ClassLoader类中getSystemClassLoader()方法的返回值。

双亲委派模型要求除了顶层的启动类加载器外,其余的类加载器都应有自己的父类加载器。不过这里的类加载器之间的父子关系不是以继承(Inheritance)的方式实现的,而是通常以组合(Composition)关系来复用父加载器的代码。

双亲委派模型的工作过程是:如果一个类加载器收到了类加载的请求,它首先不会自己尝试去加载这个类,而是把这个请求委派给父类加载器去完成,每一个层次的类加载器都是如此,因此所有的加载请求最终都应该传送到最顶层的启动类加载器中,只有当父类加载器反馈自己无法完成这个加载请求(它的搜索范围中没有找到所需的类)时,子加载器才会尝试自己去完成加载。

使用双亲委派模型来组织类加载器之间的关系,一个显而意见的好处就是Java中的类随着他的类加载器一起具备了一种带有优先级的层次关系。例如类java.lang.Object,它存在rt.jar包中,无论哪一个类加载器去加载这个类,最终都是委派给处于模型最顶端的启动类加载器进行加载,因此Object类在程序的各种类加载器环境中都能保证是同一个类。反之,如果没有使用双亲委派模型,都由各个类加载器自行去加载的话,如果用户自己也编写了一个名为java.lang.Object的类,并放在程序的ClassPath下,那系统就会出现多个不同的Object类,Java类型体系中最基本的行为也无法保证,应用程序会变得混乱。

实现双亲委派模型的代码

protected Class<?> loadClass(String name, boolean resolve) throws ClassNotFoundException{
    // 加锁
    synchronized (getClassLoadingLock(name)) {
        // 首先,检查类是否已经加载
        Class<?> c = findLoadedClass(name);
        if (c == null) {
            long t0 = System.nanoTime();
            try {
                if (parent != null) {
                    c = parent.loadClass(name, false);
                } else {
                    // parent为null,代表它的父类是根加载器
                    c = findBootstrapClassOrNull(name);
                }
            } catch (ClassNotFoundException e) {
                // 如果没有从非空父类加载器中找到类,则抛出ClassNotFoundException
            }
            if (c == null) {
                // 如果仍未找到,则调用findClass来查找该类。
                long t1 = System.nanoTime();
                c = findClass(name);

                // this is the defining class loader; record the stats
                sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                sun.misc.PerfCounter.getFindClasses().increment();
            }
        }
        if (resolve) {
            resolveClass(c);
        }
        return c;
    }
}

自定义类加载器

自定义类加载器可以实现一些特殊的需求,例如实现类的动态加载、实现类的隔离性、实现类的热替换等。

JDK1.2之前就有了就有了类加载器的概念和抽象类java.lang.ClassLoader就有了,JDK1.2之后才被引入双亲委派模型。设计者为了引入双亲委派模型不得不作出一些妥协,为了兼容已有的代码,无法再以技术手段避免loadClass()被子类覆盖的可能性,只能在JDK1.2之后的java.lang.ClassLoader中添加一个新的protected方法findClass(),并引导用户编写类加载逻辑时尽可能去重写这个方法,而不是在loadClass方法中编写代码。

类加载执行过程
  1. 加载:类加载器首先会检查是否已经加载了该类,如果已经加载了该类,则直接返回该类的Class对象;如果没有加载该类,则继续执行下一步操作。
  2. 连接:连接分为三个阶段:分别是验证、准备、解析。
    3. 验证阶段:验证该类是否符合Java虚拟机规范,主要检查该类文件的格式、语法和语义等方面。
    4. 准备阶段:为该类的静态变量分配内存,并设置默认值。
    4. 解析阶段:将该类的符号引用转换为直接引用。
  3. 初始化:类加载器会执行类的初始化代码,包括静态变量初始化和静态代码块的执行等。
类的初始化

《Java虚拟机规范》中并没有对什么情况下需要开始类加载过程的第一个阶段“加载”进行强制约束,但是对于初始化阶段,《Java虚拟机规范》则是严格规定了有且仅有六种情况必须对类进行“初始化”(加载、验证、准备自然需要在此之前开始):

  1. 遇到new、getstatic、putstatic、invokestatic这四条字节码指令,如果类型没有进行过初始化,则需要先触发其初始化阶段。
  2. 使用java.lang.reflect包的方法对类型进行方式调用的时候,如果类型没有进行过初始化,则需要先触发其初始化阶段。
  3. 当初始化类的时候,如果父类还没有进行过初始化,则需要先触发其父类的初始化。
  4. 当虚拟机启动时,用户指定的主类(包含main方法的类),虚拟机会先初始化这个主类。
  5. 使用JDK7新加入的动态语言支持,java.lang.invoke.MethodHandle实例最后的解析结果为REF_getStatic、REF_putStatic、REF_invokeStatic、REF_newInvokeSpecial四种类型的方法句柄。
  6. 当一个接口中定义了JDK8新加入的默认方法,如果有这个接口的实现类发生了初始化,则这个接口先初始化。

类的初始化时类加载的最后一个步骤,Java虚拟机真正开始执行类中编写的代码(static{}块)。Java类中有变量的初始化或者静态代码块,就会由Javac编译生成()方法,初始化阶段就是执行该方法的过程。如果一个类中没有对变量的赋值也没有静态代码块,则编译器可以不为这个类生成()方法,接口不能有静态代码块,但是没有变量赋值,也是不会有()方法。接口与类的不同是,只有父接口定义的变量被使用时,父接口才会被初始化。Java虚拟机在执行一个类的()方法在多线程下是安全的,只有一个线程会去执行这个类的方法。

class DeadLockClass{
    static{
        if(true){
            System.out.println(Thread.currentThread().getName() + "init DeadLockClass ");
            while(true){
                
            }
        }
    }
    public static void main(String[] args){
        Runnable script = new Runnable(){
            public void run(){
                System.out.println(Thread.currentThread().getName() + " start");
                DeadLockClass dlc = new DeadLockClass();
                System.out.println(Thread.currentThread().getName() + " end");
            }
        };
        Thread t1 = new Thread(script);
        Thread t2 = new Thread(script);
        t1.start();
        t2.start();
    }
}

发生类初始化的情况
  1. 用new创建一个对象、反射创建对象
  2. 读取或者设置一个类型的静态字段(被final修饰的静态字段不算)
  3. 调用一个类型的静态方法
  4. 使用java.lang.reflect包的方法对类型进行放射调用(当调用时才会触发,如获取属性值,执行方法)
  5. 虚拟机启动main方法所在的类
  6. 子类进行初始化,父类还没有被初始化
  7. Class.forName
不会发生类初始化的情况
  1. 通过子类访问父类的静态域,不会初始化子类
  2. 通过数组定义类的应用(Myuser[] users = new MyUser[10]
  3. 对常量的引用

JVM内存模型

JVM的内存模型是指Java虚拟机在运行Java程序时所使用的内存模型

JVM简单了解内存溢出_第1张图片

程序计数器

程序计数器是一块较小的内存空间,它用于指示当前线程所执行的字节码指令的地址。在多线程的情况下,每个线程都拥有自己的程序计数器,用于存储当前线程的执行地址。

Java虚拟机栈

Java虚拟机栈是线程私有的,用于存储Java方法执行的栈帧。每个栈帧包含了局部变量表、操作数栈、动态链接、返回地址等信息,用于支持Java方法的调用和执行。

内存区域有两种异常:

  1. 线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常
  2. 如果Java虚拟机允许栈容量可以动态扩展,当栈的扩展无法申请足够的内存会抛出OutOfMemoryError异常
Java堆

Java堆是Java虚拟机所管理的最大的一块内存空间,用于存储Java对象和数组。Java堆可以分为新生代和老年代两部分,其中新生代又分为Eden区和两个Survivor区。

方法区

方法区用于存储类的元数据信息,包括类的名称、方法、字段等信息。方法区可以用于实现动态代理、反射等功能。

本地方法栈

本地方法栈与Java虚拟机栈类似,但是它用于存储本地方法的执行栈帧。

JVM的沙箱安全机制

JVM的沙箱安全机制是指在Java程序运行时,Java虚拟机会限制程序的执行权限,防止恶意代码的执行,从而保证Java程序的安全性。Java的沙箱安全机制主要体现在以下几个方面

  1. 类加载机制:Java的类加载机制采用双亲委派模型,可以避免同名类的重复加载,同时也可以防止恶意代码的执行。
  2. 安全管理器:Java虚拟机提供了一个安全管理器(Security Manager),可以控制程序对系统资源的访问权限,例如文件访问、网络访问、系统属性、进程控制等等。
  3. 字节码校验:Java虚拟机会对加载的字节码文件进行校验,防止字节码被恶意篡改,从而保证Java程序的安全性。
  4. 沙箱环境:Java虚拟机提供了一个沙箱环境(Sandbox),可以限制程序对系统资源的访问权限。沙箱环境是由安全管理器控制的,通过对程序的访问权限进行控制,可以避免程序对系统资源的滥用。

JVM的调优和监控

Java内存溢出

1.模拟Java堆内存溢出

// VM 参数 -Xms20m -Xmx20m -XX:+HeapDumpOnOutOfMemoryError
public static void main(String[] args) {
	List<Object> list = new ArrayList<>();

	while (true){
		list.add(new Object());
    }
}

JVM简单了解内存溢出_第2张图片
JVM简单了解内存溢出_第3张图片
JVM简单了解内存溢出_第4张图片
JVM简单了解内存溢出_第5张图片

D:\dev\spring_data_jpa\target\test-classes\java_pid7048.hprof

D:\dev\spring_data_jpa\java_pid6452.hprof IDEA启动生存

JVM简单了解内存溢出_第6张图片

2.模拟栈内存溢出

Java虚拟机规范描述的异常:

  1. 如果线程请求的栈深度大于虚拟机所允许的栈深度,则抛出StackOverflowError。
  2. 如果虚拟机的栈内存允许动态扩展,当扩展栈容量无法申请到足够的内存时,将抛出OutOfMemoryError。

HotSpot虚拟机不支持栈的动态扩展,但是再创建线程申请内存时就因无法获取足够的内存而出现的异常,会是OutOfMemoryError异常。

设置虚拟机容量-Xss256k

public class StackOverTest01 {
    
    private int length = 0;
    
    private void stack(){
        length++;
        stack();
    }

    public static void main(String[] args) {
        StackOverTest01 obj = new StackOverTest01();
        try {
            obj.stack();
        }catch (Throwable e){
            System.out.println("stackLength: " + obj.length);
        }
    }
}

JVM简单了解内存溢出_第7张图片

public class StackOverTest02 {

    static class InnerClass{

        public int length = 0;
        public void stack(){
            Map<String,String> map1 = new HashMap<>(1024);
            Map<String,String> map2 = new HashMap<>(1024);
            Map<String,String> map3 = new HashMap<>(1024);
            Map<String,String> map4 = new HashMap<>(1024);
            Map<String,String> map5 = new HashMap<>(1024);
            Map<String,String> map6 = new HashMap<>(1024);
            Map<String,String> map7 = new HashMap<>(1024);
            Map<String,String> map8 = new HashMap<>(1024);
            Map<String,String> map9 = new HashMap<>(1024);
            Map<String,String> map10 = new HashMap<>(1024);
            Map<String,String> map11 = new HashMap<>(1024);
            Map<String,String> map12 = new HashMap<>(1024);
            Map<String,String> map13 = new HashMap<>(1024);
            Map<String,String> map14 = new HashMap<>(1024);
            Map<String,String> map15 = new HashMap<>(1024);
            Map<String,String> map16 = new HashMap<>(1024);
            Map<String,String> map17 = new HashMap<>(1024);
            Map<String,String> map18 = new HashMap<>(1024);
            Map<String,String> map19 = new HashMap<>(1024);
            Map<String,String> map20 = new HashMap<>(1024);
            Map<String,String> map21 = new HashMap<>(1024);
            Map<String,String> map22 = new HashMap<>(1024);
            Map<String,String> map23 = new HashMap<>(1024);
            Map<String,String> map24 = new HashMap<>(1024);
            Map<String,String> map25 = new HashMap<>(1024);
            Map<String,String> map26 = new HashMap<>(1024);
            Map<String,String> map27 = new HashMap<>(1024);
            Map<String,String> map28 = new HashMap<>(1024);
            Map<String,String> map29 = new HashMap<>(1024);
            Map<String,String> map30 = new HashMap<>(1024);

            length++;

            stack();

        }

    }

    public static void main(String[] args) {
        InnerClass innerClass = new InnerClass();
        try {
            innerClass.stack();
        }catch (Throwable e){
            System.out.println("stackLength: " + innerClass.length);
        }
    }

}

JVM简单了解内存溢出_第8张图片

模拟创建线程内存不足,引发的OutOfMemoryError,启动-Xss2m,给线程分配2m内存

由于本地内存太大,很难达到内存的最大值,把内存耗尽,通过在2核4G的服务器上面测试,达到了效果。

public class StackOverTest03 {

    private static AtomicInteger count = new AtomicInteger(0);

    public static void main(String[] args) {
        while (true){
            Thread thread = new Thread(() -> {

                count.incrementAndGet();

                int i = 0;

                while (true) {
                    if (i == 0){
                        if (count.get() % 10240 == 0){
                            System.out.println(Thread.currentThread().getName() + ": " + count);
                        }
                    }
                    try {
                        Thread.sleep(6000000);
                        i++;
                    } catch (InterruptedException e) {
                        throw new RuntimeException(e);
                    }
                }
            });
            thread.start();
        }
    }

}

JVM简单了解内存溢出_第9张图片

3.模拟方法区和常量池内存溢出

由于JDK1.8之后,常量池是在堆内存中的,在设置永久代的大小时,程序结束也提示了,1.8不支持这个设置了。不加堆内存限制应该很难到达OutOfMemoryError。

public class PermGenTest01 {
    public static void main(String[] args) {
        // -XX:PermSize=6m -XX:MaxPermSize=6m -Xms20m -Xmx20m
        List<String> list = new ArrayList<>();
        int i = 0;
        while (true){
            list.add(String.valueOf(i++).intern());
        }
    }
}

JVM简单了解内存溢出_第10张图片

JDK1.8之前,方法区内存也叫永久代,但是JDK1.8开始,去除了永久代,改为元空间

public class MethodAreaTest01 {

    static class InnerClass{}

    // -XX:MaxMetaspaceSize=10M 元空间最大值
    // -XX:MetaspaceSize=1M 元空间初始空间大小,到达该值会触发垃圾回收
    // -XX:MinMetaspaceFreeRatio= 垃圾回收之后控制最小的元空间剩余容量的百分比
    // -XX:PermSize=10M -XX:MaxPermSize=10m -XX:MaxMetaspaceSize=10M
    public static void main(String[] args) {
        while (true){
            Enhancer enhancer = new Enhancer();
            enhancer.setSuperclass(InnerClass.class);
            enhancer.setUseCache(false);
            enhancer.setCallback(new MethodInterceptor() {
                @Override
                public Object intercept(Object o, Method method, Object[] objects, MethodProxy methodProxy) throws Throwable {
                    return methodProxy.invoke(o,args);
                }
            });
            enhancer.create();
        }
    }
}

JVM简单了解内存溢出_第11张图片

4.本机直接内存溢出

public class DirectMemoryTest01 {
    // -XX:MaxDirectMemorySize直接内存的最大容量,默认和java堆的最大值
    // -Xmx20M -XX:MaxDirectMemorySize=10M
    public static void main(String[] args) throws IllegalAccessException {
        Field unsafeField = Unsafe.class.getDeclaredFields()[0];
        unsafeField.setAccessible(true);
        Unsafe unsafe = (Unsafe) unsafeField.get(null);
        while (true){
            unsafe.allocateMemory(1024*1024);
        }
    }
}

JVM简单了解内存溢出_第12张图片

垃圾收集器和内存分配

你可能感兴趣的:(jvm)