python pyaudio给数据加噪声

python pyaudio给数据加噪声

# -*- coding: utf-8 -*-
import argparse
import array
import math
import numpy
import numpy as np
import random
import wave


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--clean_file", type=str, required=True)
    parser.add_argument("--noise_file", type=str, required=True)
    parser.add_argument("--output_mixed_file", type=str, default="", required=True)
    parser.add_argument("--output_clean_file", type=str, default="")
    parser.add_argument("--output_noise_file", type=str, default="")
    parser.add_argument("--snr", type=float, default="", required=True)
    args = parser.parse_args()
    return args


# 根据干净音频的均方根和信噪比,计算调整后的噪声音频的均方根
def cal_adjusted_rms(clean_rms, snr):
    # 计算比例因子 a
    a = float(snr) / 20
    # 计算噪声水平的均方根
    noise_rms = clean_rms / (10 ** a)
    return noise_rms


# 拿到音频文件的振幅数组
def cal_amp(wf):
    # 从音频文件中读取所有帧
    buffer = wf.readframes(wf.getnframes())
    # 保持较高的计算精度,直接转为 float64 会导致数据溢出
    amptitude = (np.frombuffer(buffer, dtype="int16")).astype(np.float64)
    return amptitude


# 基于振幅数组计算音频的均方根值
def cal_rms(amp):
    # np.square() 平方
    return np.sqrt(np.mean(np.square(amp), axis=-1))


# 保存wave文件
def save_waveform(output_path, params, amp):
    output_file = wave.Wave_write(output_path)
    output_file.setparams(params)  # params 包含了干净音频的采样率、采样位数、通道数等信息
    # 先将振幅数据转换为 16 位整型,再转换为字节流,最后写入 wave
    output_file.writeframes(array.array("h", amp.astype(np.int16)).tobytes())
    output_file.close()


if __name__ == "__main__":
    args = get_args()

    # 源文件 和 噪声文件
    clean_file = args.clean_file
    noise_file = args.noise_file

    clean_wav = wave.open(clean_file, "r")
    noise_wav = wave.open(noise_file, "r")
    print(clean_file)
    # 音频文件数组
    clean_amp = cal_amp(clean_wav)
    noise_amp = cal_amp(noise_wav)

    # 计算纯净音频的均方根
    clean_rms = cal_rms(clean_amp)

    # 随机选择噪声音频中与干净音频长度相同的一段进行切割
    # 计算切割后的噪声音频的均方根
    start = random.randint(0, len(noise_amp) - len(clean_amp))
    divided_noise_amp = noise_amp[start: start + len(clean_amp)]
    noise_rms = cal_rms(divided_noise_amp)

    # 根据干净音频的均方根和信噪比,计算调整后的噪声音频的均方根
    snr = args.snr
    adjusted_noise_rms = cal_adjusted_rms(clean_rms, snr)

    # 将调整后的噪声音频与干净音频相加得到混合后的音频
    adjusted_noise_amp = divided_noise_amp * (adjusted_noise_rms / noise_rms)
    mixed_amp = (clean_amp + adjusted_noise_amp)

    # np.iinfo(np.int16).max 获取 np.int16 类型能够表示的最大值,并将其赋给变量 max_int16
    max_int16 = np.iinfo(np.int16).max
    min_int16 = np.iinfo(np.int16).min

    if mixed_amp.max(axis=0) > max_int16 or mixed_amp.min(axis=0) < min_int16:
        # 如果混合音频的最大值大于等于最小值的绝对值,则使用最大值的缩放因子,否则,使用最小值的缩放因子
        if mixed_amp.max(axis=0) >= abs(mixed_amp.min(axis=0)):
            reduction_rate = max_int16 / mixed_amp.max(axis=0)
        else:
            reduction_rate = min_int16 / mixed_amp.min(axis=0)
        mixed_amp = mixed_amp * (reduction_rate)
        clean_amp = clean_amp * (reduction_rate)

    # 保存添加噪声后的 wav
    save_waveform(args.output_mixed_file, clean_wav.getparams(), mixed_amp)
    print('finish')

代码运行方式如下:

python3 speech_noise.py --clean_file data/source_clean/arctic_a0001.wav --noise_file data/source_noise/ch01.wav --output_mixed_file data/output_mixed/0.wav --snr 0

你可能感兴趣的:(人工智能,python,python,开发语言)