Leetcode每日一题学习训练——Python3版(到达首都的最少油耗)

版本说明

当前版本号[20231205]。

版本 修改说明
20231205 初版

目录

文章目录

  • 版本说明
  • 目录
  • 到达首都的最少油耗
    • 理解题目
    • 代码思路
    • 参考代码

原题可以点击此 2477. 到达首都的最少油耗 前去练习。

到达首都的最少油耗

​ 给你一棵 n 个节点的树(一个无向、连通、无环图),每个节点表示一个城市,编号从 0n - 1 ,且恰好有 n - 1 条路。0 是首都。给你一个二维整数数组 roads ,其中 roads[i] = [ai, bi] ,表示城市 aibi 之间有一条 双向路

​ 每个城市里有一个代表,他们都要去首都参加一个会议。

​ 每座城市里有一辆车。给你一个整数 seats 表示每辆车里面座位的数目。

​ 城市里的代表可以选择乘坐所在城市的车,或者乘坐其他城市的车。相邻城市之间一辆车的油耗是一升汽油。

​ 请你返回到达首都最少需要多少升汽油。

示例 1:

Leetcode每日一题学习训练——Python3版(到达首都的最少油耗)_第1张图片

输入:roads = [[0,1],[0,2],[0,3]], seats = 5
输出:3
解释:
- 代表 1 直接到达首都,消耗 1 升汽油。
- 代表 2 直接到达首都,消耗 1 升汽油。
- 代表 3 直接到达首都,消耗 1 升汽油。
最少消耗 3 升汽油。

示例 2:

Leetcode每日一题学习训练——Python3版(到达首都的最少油耗)_第2张图片

输入:roads = [[3,1],[3,2],[1,0],[0,4],[0,5],[4,6]], seats = 2
输出:7
解释:
- 代表 2 到达城市 3 ,消耗 1 升汽油。
- 代表 2 和代表 3 一起到达城市 1 ,消耗 1 升汽油。
- 代表 2 和代表 3 一起到达首都,消耗 1 升汽油。
- 代表 1 直接到达首都,消耗 1 升汽油。
- 代表 5 直接到达首都,消耗 1 升汽油。
- 代表 6 到达城市 4 ,消耗 1 升汽油。
- 代表 4 和代表 6 一起到达首都,消耗 1 升汽油。
最少消耗 7 升汽油。

示例 3:

img

输入:roads = [], seats = 1
输出:0
解释:没有代表需要从别的城市到达首都。

提示:

  • 1 <= n <= 105
  • roads.length == n - 1
  • roads[i].length == 2
  • 0 <= ai, bi < n
  • ai != bi
  • roads 表示一棵合法的树。
  • 1 <= seats <= 105

理解题目

  1. 这个问题可以使用图的广度优先搜索(BFS)算法来解决。
  2. 广度优先搜索(BFS)算法是一种用于遍历或搜索树或图的算法。它从根节点开始,然后访问所有相邻的节点,然后再访问这些相邻节点的相邻节点,依此类推。
  3. 首先,我们需要创建一个邻接表来表示城市之间的道路关系。
  4. 然后,从首都开始进行BFS搜索,每次搜索时,将当前城市的汽油消耗累加到总油耗中,并更新每个城市的汽油消耗。
  5. 最后,返回到达首都的总油耗。

代码思路

  1. 它包含一个名为minimumFuelCost的方法,该方法接受两个参数:roads和seats。**roads是一个二维列表,表示城市之间的道路关系;seats是一个整数,表示每辆车的座位数。**方法的目的是计算到达首都所需的最少汽油量。

    ​ (该函数:minimumFuelCost是函数名;

    self是类实例的引用,表示这个函数是一个类的方法;

    (self, roads: List[List[int]], seats: int)是函数的参数列表,包括两个参数:

    ​ 一个是roads,类型为List[List[int]],表示一个二维整数列表

    ​ 另一个是seats,类型为int,表示一个整数。

    -> int表示这个函数的返回值类型是整数。)

     def minimumFuelCost(self, roads: List[List[int]], seats: int) -> int:
    
  2. 首先,代码创建了一个名为g的空列表,用于存储道路关系。然后,遍历roads列表,将每个城市的邻居添加到g中。

    [[] for i in range(len(roads) + 1)]表示创建一个长度为len(roads) + 1的列表;

    ​ 其中每个元素都是一个空列表。

    ​ 这样做的目的是为了让每个节点都有一个与之对应的邻接表,

    ​ 方便后续进行图的遍历和操作。)

       # 创建一个空的邻接表g,用于存储道路关系
            g = [[] for i in range(len(roads) + 1)]
            for e in roads:
                # 将道路的两个端点添加到对方的邻接表中
                g[e[0]].append(e[1])
                g[e[1]].append(e[0])
            res = 0  # 初始化结果变量为0
    
  3. 接下来,定义了一个名为dfs的内部函数,用于深度优先搜索。这个函数接受两个参数:**cur表示当前城市,fa表示当前城市的父节点。**在dfs函数中,首先初始化一个名为peopleSum的变量,表示当前城市及其代表的人数之和。

            def dfs(cur, fa):
                nonlocal res  # 声明res为非局部变量,以便在dfs函数中修改它
                peopleSum = 1  # 初始化当前节点的人数为1
    
  4. 然后,遍历当前城市的代表,如果代表不是父节点,则递归调用dfs函数,并将返回的人数累加到peopleSum中。同时,更新res变量,将其加上(peopleCnt + seats - 1) // seats的结果。最后,返回peopleSum。

     for ne in g[cur]:  # 遍历当前节点的所有代表
                    if ne != fa:  # 如果代表不是父节点
                        peopleCnt = dfs(ne, cur)  # 递归调用dfs函数,计算代表的人数
                        peopleSum += peopleCnt  # 累加代表的人数到当前节点的人数
                        res += (peopleCnt + seats - 1) // seats  # 更新结果变量,计算所需的汽油量
                return peopleSum  # 返回当前节点的人数
    
  5. 在主函数中,调用dfs函数,传入初始值0和-1。最后,返回res作为结果。

         dfs(0, -1)  # 从根节点开始调用dfs函数
        return res  # 返回结果变量

参考代码

class Solution:
    def minimumFuelCost(self, roads: List[List[int]], seats: int) -> int:
        g = [[] for i in range(len(roads) + 1)]
        for e in roads:
            g[e[0]].append(e[1])
            g[e[1]].append(e[0])
        res = 0
        def dfs(cur, fa):
            nonlocal res
            peopleSum = 1 
            for ne in g[cur]:
                if ne != fa:
                    peopleCnt = dfs(ne, cur)
                    peopleSum += peopleCnt
                    res += (peopleCnt + seats - 1) // seats
            return peopleSum
        dfs(0, -1)
        return res

你可能感兴趣的:(算法练习笔记(Python版),leetcode,学习,算法,python,python3.11)