代码随想录算法训练营 ---第五十六天

今天同样是 动态规划:编辑距离问题!

第一题:

代码随想录算法训练营 ---第五十六天_第1张图片

简介:

本题有两个思路:

1.求出最长公共子串,然后返还
word1.length()+word2.length()-2*dp[word1.size()][word2.size()]
本思路解法与求最长公共子串相同,只是返还结果不同
代码实现:
   int minDistance(string word1, string word2) {
          vector> dp(word1.size() + 1, vector(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);
                }
            }
        }
        return dp[word1.size()][word2.size()];

    }
2.正常进行动态分析

动态规划五部曲:

1.确定dp数组含义

  dp[i][j]:   以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。

2.确定dp数组递推公式

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

因为 dp[i][j - 1] = dp[i - 1][j - 1] + 1(可以理解为dp[i-1][j-1]做了一步操作),所以递推公式可简化为:dp[i][j] = min(dp[i - 1][j] + 1, dp[i][j - 1] + 1);

这里可能不少录友有点迷糊,从字面上理解 就是 当 同时删word1[i - 1]和word2[j - 1],dp[i][j-1] 本来就不考虑 word2[j - 1]了,那么我在删 word1[i - 1],是不是就达到两个元素都删除的效果,即 dp[i][j-1] + 1,只是一个思维方式的替换,如果不明白可以将递推公式写全。

3.确定数组的初始化

可以想一下它的具体含义,每个值赋为当前值时的含义。 

4.确定数组的遍历顺序

从上到下,从左到右

5.打印数组

代码随想录算法训练营 ---第五十六天_第2张图片

代码实现:
   int minDistance(string word1, string word2) {
          vector> dp(word1.size() + 1, vector(word2.size() + 1));
        for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
        for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
        for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1, min(dp[i][j - 1] + 1,dp[i-1][j-1]+2));
                }
            }
        }
        return dp[word1.size()][word2.size()];

    }

第二题:

代码随想录算法训练营 ---第五十六天_第3张图片

简介:

递推公式分析:

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])
    不操作
if (word1[i - 1] != word2[j - 1])
    增
    删
    换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何操作,即dp[i][j] = dp[i - 1][j - 1];

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),有几种情况

  • 操作一:word1[i-1]删除一个元素

即 dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2[j-1]删除一个元素

即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"word1删除元素'd' 和 word2添加一个元素'd',变成word1="a", word2="ad", 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d
   +-----+-----+             +-----+-----+-----+
   |  0  |  1  |             |  0  |  1  |  2  |
   +-----+-----+   ===>      +-----+-----+-----+
 a |  1  |  0  |           a |  1  |  0  |  1  |
   +-----+-----+             +-----+-----+-----+
 d |  2  |  1  |
   +-----+-----+

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1] 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1];
}
else {
    dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

明白了递推公式,其他与上题相同。

代码随想录算法训练营 ---第五十六天_第4张图片 

代码实现: 

    int minDistance(string word1, string word2) {
         vector> dp(word1.size()+1,vector(word2.size()+1,0));
         for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
         for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
          for (int i = 1; i <= word1.size(); i++) {
            for (int j = 1; j <= word2.size(); j++) {
                if (word1[i - 1] == word2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = min(dp[i - 1][j] + 1,min(dp[i][j - 1] + 1,dp[i-1][j-1]+1));
                }
            }
        }
        return dp[word1.size()][word2.size()];
    }

总结: 

总体来说,有点难懂,多多练习就好了,多刷几遍。继续加油!

你可能感兴趣的:(算法)