Wooden Sticks
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 35 Accepted Submission(s) : 11
Font: Times New Roman | Verdana | Georgia
Font Size: ← →
Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick. The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case, and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3
5
4 9 5 2 2 1 3 5 1 4
3
2 2 1 1 2 2
3
1 3 2 2 3 1
Sample Output
2
1
3
题意:
给出一组木棍的长l、重w,如果上一个木棍的l、w比下一个的要小的话,不需要额外时间,否则多加一分钟。
分析:
贪心算法,优先选择最长的,再从剩下的里面选择最长的。
先按l从小到大的顺序来排好(若相等,则用w),从第一个开始,往后找找到这组数一系列(即w、l都比下一个小)找到最后停止,计数+1,这是该组的最优,即贪心中的单步最优。
找完一组后,再从剩下的当中找,当找过所有的数之后,结束count即为所求的数。
代码:
#include<algorithm>
#include<stdio.h>
#include<string.h>
using namespace std;
struct sticks{
int l;
int w;
int flag;
}s[5002];/*运用结构体使条理更清晰*/
int cmp(const void *a,const void *b){/*struct的二级排序,先按l排若相等,则按w排,注意大小关系*/
struct sticks *c=(sticks*)a;
struct sticks *d=(sticks*)b;
if(c->l!=d->l)
return c->l-d->l;
else
return c->w-d->w;
}
int main(){
int T,n;
int i,j,count,cl,cw;/*count是计数的,ccurrent是当前的,所以cl为当前
的长,同理cw*/
scanf("%d",&T);
while(T--){
scanf("%d",&n);
memset(s,0,sizeof(s));/*清零防干扰*/
for(i=0;i<n;i++)
scanf("%d%d",&s[i].l,&s[i].w);
qsort(s,n,sizeof(s[0]),cmp);/*这里排序的数目是n,从小到大排*/
count=1;/*第一根木棍上来肯定要花1*/
s[0].flag=1;/*标记下是否被容纳过*/
cl=s[0].l;/*记录当前的l*/
cw=s[0].w;/*记录当前的w*/
/*用循环去跟当前比较,如果都小的话,就是能被容纳,不需要多加时间*/
for(i=1;i<n;i++){
for(j=i;j<n;j++){
if(s[j].flag!=1&&s[j].l>=cl&&s[j].w>=cw){
s[j].flag=1;
cl=s[j].l;
cw=s[j].w;
}
}
j=1;
while(s[j].flag==1)/*判断是否全被容纳过,若是,则完成*/
j++;
i=j;/*找到最前边的没有被标记过的一组数,即剩下中最小的一组数,再次找*/
if(i==n)
break;/*跳出*/
count++;/*每找过一次,就说明一次可能,所以count计数是所求结果*/
s[i].flag=1;
cl=s[i].l;/*重新刷新下当前数*/
cw=s[i].w;
}
printf("%d\n",count);
}
return 0;
}