题意:
n行, a房间的气球,b房间的气球
i行需要的气球,与a房的距离,b房的距离
求最小距离
#include <stdio.h> #include <string.h> #include <iostream> #include <math.h> #include <queue> #include <set> #include <algorithm> #include <stdlib.h> #define N 2000 #define M 10100 #define inf 107374182 #define ll int using namespace std; inline ll Min(ll a,ll b){return a>b?b:a;} inline ll Max(ll a,ll b){return a>b?a:b;} int n; //双向边,注意RE 注意这个模版是 相同起末点的边 合并而不是去重 struct Edge{ int from, to, flow, cap, nex, cost; }edge[M*2]; int head[N], edgenum;//2个要初始化-1和0 void addedge(int u,int v,int cap,int cost){//网络流要加反向弧 Edge E={u, v, 0, cap, head[u], cost}; edge[edgenum]=E; head[u]=edgenum++; Edge E2={v, u, 0, 0, head[v], -cost}; //这里的cap若是单向边要为0 edge[edgenum]=E2; head[v]=edgenum++; } int D[N], P[N], A[N]; bool inq[N]; bool BellmanFord(int s, int t, int &flow, int &cost){ for(int i=0;i<=n+4;i++) D[i]= inf; memset(inq, 0, sizeof(inq)); D[s]=0; inq[s]=1; P[s]=0; A[s]=inf; queue<int> Q; Q.push( s ); while( !Q.empty()){ int u = Q.front(); Q.pop(); inq[u]=0; for(int i=head[u]; i!=-1; i=edge[i].nex){ Edge &E = edge[i]; if(E.cap > E.flow && D[E.to] > D[u] +E.cost){ D[E.to] = D[u] + E.cost ; P[E.to] = i; A[E.to] = Min(A[u], E.cap - E.flow); if(!inq[E.to]) Q.push(E.to) , inq[E.to] = 1; } } } if(D[t] == inf) return false; flow += A[t]; cost += D[t] * A[t]; int u = t; while(u != s){ edge[P[u]].flow += A[t]; edge[P[u]^1].flow -= A[t]; u = edge[P[u]].from; } return true; } int Mincost(int s,int t){ int flow = 0, cost = 0; while(BellmanFord(0, n+3, flow, cost)); return cost; } int main(){ int i,disa,disb,flow,maxa,maxb; while( scanf("%d %d %d",&n, &maxa, &maxb), n+maxb+maxa){ memset(head,-1,sizeof(head)); edgenum=0; addedge(n+1, n+3, maxa, 0); addedge(n+2, n+3, maxb, 0); for(i=1;i<=n;i++){ scanf("%d %d %d",&flow,&disa,&disb); addedge(0, i, flow, 0); addedge(i, n+1, flow, disa); addedge(i, n+2, flow, disb); } printf("%d\n",Mincost(0,n+3) ); } return 0; } /* 3 15 35 10 20 10 10 10 30 10 40 10 5 5 0 1 10 1000 1 10 1000 1 10 1000 0 10 1000 1 10 1000 0 0 0 ans: 300 40 */