- Python 库的记录
weixin_40895135
python
GitHub-jobbole/awesome-python-cn:Python资源大全中文版,内容包括:Web框架、网络爬虫、网络内容提取、模板引擎、数据库、数据可视化、图片处理、文本处理、自然语言处理、机器学习、日志、代码分析等环境管理管理Python版本和环境的工具p–非常简单的交互式python版本管理工具。pyenv–简单的Python版本管理工具。Vex–可以在虚拟环境中执行命令。vir
- 词表设计:特殊Token区域与共享去区域的深入探讨
东方佑
开发语言
在自然语言处理(NLP)中,Tokenizer的设计对于模型性能有着至关重要的影响。Tokenizer不仅决定了文本如何被分割成更小的单位(即token),还决定了这些token如何被映射到模型可以理解的形式。本文将详细探讨一种特殊的Tokenizer设计方法——特殊Token区域与共享去区域的设计理念,并介绍其应用场景和实现方式。特殊Token区域概述特殊Token区域通常包括一些特定的标识符,
- Synthesia技术浅析(四):自然语言处理
爱研究的小牛
AIGC—视频AIGC—虚拟现实AIGC—自然语言处理自然语言处理人工智能AIGC
Synthesia的自然语言处理(NLP)模块是其核心技术之一,涵盖了文本转语音(TTS)、情感分析以及多语言支持等多个方面。一、文本转语音(TTS)1.关键组件Synthesia的TTS系统主要依赖于Tacotron2和WaveGlow模型。这些模型共同作用,将文本转换为高质量的语音。2.过程模型详解2.1文本预处理文本预处理是TTS的第一步,包括分词、标点符号处理、数字和日期格式转换等。分词(
- 大模型问答机器人的智能化程度
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
大模型、问答机器人、智能化程度、自然语言处理、深度学习、Transformer模型、知识图谱、推理能力、对话系统1.背景介绍近年来,人工智能技术取得了飞速发展,特别是深度学习的兴起,为自然语言处理(NLP)领域带来了革命性的变革。其中,大模型问答机器人作为一种新型的智能交互系统,凭借其强大的语言理解和生成能力,在客服、教育、娱乐等领域展现出广阔的应用前景。问答机器人是指能够理解用户自然语言问题并给
- 大语言模型原理与工程实践:残差连接与层归一化
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着自然语言处理(NLP)的发展,深度学习在过去几年中取得了令人瞩目的成果。其中,循环神经网络(RNN)和卷积神经网络(CNN)在图像和文本分类、语义角色标注、机器翻译等领域表现出色。然而,这些网络在训练过程中经常遭遇梯度消失和梯度爆炸的问题。为了解决这些问题,我们引入了残差连接(ResidualConnections)和层归一化(BatchNormalization)来改善模型性能。
- 模型架构选择:从传统NLP到Transformer
AI天才研究院
AI大模型应用入门实战与进阶大数据AI人工智能计算大数据人工智能语言模型AI大模型LLMJavaPython架构设计AgentRPA
模型架构选择:从传统NLP到Transformer关键词:自然语言处理(NLP),模型架构,传统NLP,Transformer,RNN,CNN,预训练模型文章目录模型架构选择:从传统NLP到Transformer1.背景介绍1.1问题的由来1.2研究现状1.3研究意义1.4本文结构2.核心概念与联系3.核心算法原理&具体操作步骤3.1算法原理概述3.1.1传统NLP模型3.1.2RNN模型3.1.
- Transformer架构的GPU并行和之前的NLP算法并行有什么不同?
AI大模型学习不迷路
transformer自然语言处理大模型深度学习NLPLLM大语言模型
1.什么是GPU并行计算?GPU并行计算是一种利用图形处理单元(GPU)进行大规模并行数据处理的技术。与传统的中央处理单元(CPU)相比,GPU拥有更多的核心,能够同时处理数千个线程,这使得GPU在处理高度并行的任务时表现出色。在深度学习中,GPU并行计算被广泛应用于训练神经网络,加速模型训练过程。在2017年之前,自然语言处理(NLP)领域的研究者们通常会从头开始训练模型,那时能够利用GPU进行
- 《向量数据库指南》——MoE应用:解锁深度学习新境界的钥匙
大禹智库
《实战AI智能体》《向量数据库指南》深度学习人工智能向量数据库大禹智库低代码MoE模型
在深度学习的广阔天地里,混合专家(MoE)模型如同一把锐利的钥匙,正逐步解锁着各种复杂应用场景的新境界。作为大禹智库的向量数据库高级研究员,同时也是《向量数据库指南》的作者,我深感MoE模型在推动AI技术向前发展中所扮演的重要角色。今天,我将带大家深入探讨MoE模型在自然语言处理、计算机视觉以及多模态学习等领域的应用,并巧妙引导大家通过《向量数据库指南》获取更多干货和深度实战经验。一、自然语言处理
- LLM based Single Agent System
AGI大模型与大数据研究院
大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LLM-BasedSingleAgentSystem:ANewEraofIntelligentAutomation关键词:大语言模型,单智能体系统,强化学习,自然语言处理,智能自动化1.背景介绍近年来,随着深度学习技术的快速发展,大语言模型(LLM)在自然语言处理(NLP)领域取得了突破性进展。LLM凭借其强大的语言理解和生成能力,正在改变着人们与信息交互的方式。同时,人工智能领域的另一个重要研究
- AI常见的算法
纠结哥_Shrek
人工智能算法
人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:1.机器学习(MachineLearning)监督学习(SupervisedLearning)线性回归(LinearRegression):用于预测连续值,如房价预测。逻辑回归(LogisticRegression):用于分类问题,如垃圾邮件检测。支持向量机(SVM)
- DeepSeek 模型:架构创新与实际应用详解
汪子熙
人工智能架构语言模型人工智能
DeepSeek模型是近年来在自然语言处理(NLP)领域备受瞩目的开源大规模语言模型系列。其最新版本DeepSeek-V3采用了混合专家(Mixture-of-Experts,MoE)架构,拥有6710亿个参数,每个词元(token)激活370亿个参数。该模型在多项基准测试中表现出色,性能媲美GPT-4和Claude等领先的闭源模型。以下将详细介绍DeepSeek模型的架构、用途,并通过具体案例和
- 【llm对话系统】大模型源码分析之 LLaMA 位置编码 RoPE
kakaZhui
llama深度学习人工智能AIGCchatgpt
在自然语言处理(NLP)领域,Transformer模型已经成为主流。然而,Transformer本身并不具备处理序列顺序的能力。为了让模型理解文本中词语的相对位置,我们需要引入位置编码(PositionalEncoding)。本文将深入探讨LLaMA模型中使用的RotaryEmbedding(旋转式嵌入)位置编码方法,并对比传统的Transformer位置编码方案,分析其设计与实现的优势。1.传
- 进阶之路:从传统编程到AI大模型与Prompt驱动的爬虫技术
大模型老炮
人工智能prompt爬虫语言模型大模型学习AI大模型
前言爬虫相信很多人都对此有所了解,它主要依靠编写代码实现对网页结构的解析,通过模拟浏览器行为获取目标数据!随着人工智能技术的发展,LLM大模型的出现为爬虫技术带来了新的思路。与传统的编程模式不同,使用AI大模型+prompt可以显著提高程序员的编程效率。通过结合人工智能和自然语言处理技术,开发者可以更加高效地编写爬虫代码,并实现对网页内容的智能解析和提取。前置内容下面我将通过爬取豆瓣电影top25
- 开源模型应用落地-qwen模型小试-Qwen2.5-7B-Instruct-LangGraph-链式处理(一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型langchain
一、前言在当今人工智能快速发展的时代,大语言模型不断迭代升级,为各种复杂任务的处理提供了强大的支持。LangGraph作为一种创新的架构,其链式处理机制为充分发挥LLMs的潜力提供了新的途径。Qwen2.5模型是一款备受瞩目的大语言模型,它具备出色的语言理解和生成能力,在广泛的自然语言处理任务中都展现出了卓越的性能。其在语言的准确性、逻辑性以及对复杂语义的把握上都有着突出的表现,为基于它进行的各类
- 创建自定义示例选择器以优化语言翻译模型
dsndnwfk
easyui前端javascriptpython
引言在构建自然语言处理模型时,一个常见的挑战是如何从大量示例中选择合适的子集来提高模型的性能和响应速度。本文将介绍如何使用自定义的示例选择器来优化语言翻译模型,特别是将英语翻译成意大利语的任务。我们将展示如何实现和使用一个基于输入长度差异选择示例的Selector。主要内容示例选择器接口在LangChain中,示例选择器负责编排用于提示的示例列表。所有选择器都基于BaseExampleSelect
- Transformer--概念、作用、原理、优缺点以及简单的示例代码
Ambition_LAO
transformer深度学习
Transformer的概念Transformer是一种基于自注意力机制的神经网络模型,最早由Vaswani等人在2017年的论文《AttentionisAllYouNeed》中提出。它主要用于自然语言处理任务,如机器翻译、文本生成、文本分类等。与传统的循环神经网络(RNN)和长短时记忆网络(LSTM)不同,Transformer完全摆脱了序列结构的依赖,可以并行处理数据,显著提高了训练效率和效果
- DeepSeek:通用人工智能的技术前沿与创新突破
热爱分享的博士僧
人工智能
一、DeepSeek的定位与背景DeepSeek(深度求索)是一家聚焦**通用人工智能(AGI)**研发的中国科技公司,成立于2023年,核心团队由全球顶尖AI科学家、工程师组成。公司以“探索智能本质,实现AGI造福人类”为使命,致力于突破大模型技术的边界,推动AI从专用向通用演进。其研发方向覆盖自然语言处理、多模态交互、强化学习等领域,并在模型架构、训练效率及实际应用场景中取得显著成果。二、核心
- python 命名实体识别_Python NLTK学习11(命名实体识别和关系抽取)
weixin_39630762
python命名实体识别
PythonNLTK学习11(命名实体识别和关系抽取)发表于:2017年7月27日阅读:18262除特别注明外,本站所有文章均为小杰Code原创本系列博客为学习《用Python进行自然语言处理》一书的学习笔记。命名实体识别命名实体识别(NER)系统的目标是识别所有文字提及的命名实体。可以分解成两个子任务:确定NE的边界和确定其类型。命名实体识别非常适用于基于分类器类型的方法来处理的任务。NLTK有
- NLTK命名实体识别(NER)
Mr数据杨
Python自然语言技术NLTK自然语言处理1024程序员节
命名实体识别(NamedEntityRecognition,NER)是自然语言处理(NLP)中的一项核心技术,旨在从文本中识别出具有特定意义的实体,如人名、地名、组织名等。通过对文本的自动化处理,NER能够帮助计算机理解和组织大量的非结构化数据,为信息抽取、搜索引擎优化、数据分析等领域提供强有力的技术支持。NLTK(NaturalLanguageToolkit)是一个广泛使用的Python库,提供
- **LLM Gateway:您的智能对话门户**
芮奕滢Kirby
LLMGateway:您的智能对话门户llm-gatewayGatewayforsecure&reliablecommunicationswithOpenAIandotherLLMproviders项目地址:https://gitcode.com/gh_mirrors/ll/llm-gateway在人工智能和自然语言处理的浪潮中,LLMGateway以其卓越的设计与功能脱颖而出,为开发者和用户提供
- OpenAI的编程语言和框架,给程序员带来了帮助有哪些
API技术大佬Anzexi58
OpenAI人工智能人工智能深度学习
OpenAI是一个人工智能开发公司,成立于2015年,总部位于美国旧金山。这家公司致力于研究和开发先进的人工智能技术,旨在将这些技术应用到解决全球一些最棘手的问题上。OpenAI以其卓越的技术和实验室出品的groundbreakingAIpapers而闻名。OpenAI的研究涉及深度学习、自然语言处理、视觉感知、强化学习等多个领域,并已在各种应用中取得了令人瞩目的成果。例如,在机器人领域,Open
- 探索OpenAI Python SDK: 智能编程新里程
周澄诗Flourishing
探索OpenAIPythonSDK:智能编程新里程openai-pythonTheofficialPythonlibraryfortheOpenAIAPI项目地址:https://gitcode.com/gh_mirrors/op/openai-python如果你对人工智能和自然语言处理有浓厚的兴趣,那么这个项目将为你开启新的探索之门——。这是一个由OpenAI开发的Python库,用于与他们的A
- 大模型应用:探索AI大模型的50个应用场景:让科技改变生活。
AGI大模型资料分享员
人工智能科技生活agi语言模型自然语言处理
随着人工智能技术的迅猛发展,AI大模型在各个领域的应用日益广泛。百度创始人、董事长兼首席执行官李彦宏在2024年世界人工智能大会上表示,目前AI技术发展路线发生了方向性改变,已从过去辨别式人工智能转向了未来生成式人工智能。他更是呼吁:“大家不要卷模型,要卷应用!”本文将为大家盘点AI大模型的50个应用场景,并按应用频率从高到低进行排列,带您了解AI如何深刻改变我们的工作与生活。1.自然语言处理(N
- 我们为什么要用大语言模型来迭代数据安全能力?
大模型.
语言模型人工智能自然语言处理架构深度学习大数据大模型
在当今科技飞速发展的时代,大语言模型无疑是最炙手可热的话题之一。从OpenAI的GPT系列到谷歌的BERT,这些拥有海量参数的模型宛如智能巨人,正重塑着自然语言处理(NLP)的格局。你或许好奇,大语言模型究竟为何如此备受瞩目?这得从自然语言处理领域的核心任务——文本分类说起。文本分类,就像是给五花八门的文本信息贴上合适的“标签”,无论是判断一封邮件是正常邮件还是垃圾邮件,分析社交媒体上的评论是积极
- 检索增强(Retrieval Augmentation)是一种结合信息检索技术和生成模型的技术
大霸王龙
系统分析业务人工智能
检索增强(RetrievalAugmentation)是一种结合信息检索技术和生成模型的技术,旨在通过从外部知识库或文档中检索相关信息来增强生成模型的能力。这种方法广泛应用于自然语言处理(NLP)任务中,如问答系统、对话生成和文本生成等。1.检索增强的核心思想检索增强的核心思想是将生成模型与信息检索系统结合,利用外部知识库或文档中的信息来辅助生成更准确、更丰富的回答或内容。具体来说,检索增强包括以
- AI软件外包需要注意什么 外包开发AI软件的关键因素是什么 如何选择AI外包开发语言
北京动点飞扬软件
AI外包
1.定义目标与需求首先,要明确你希望AI智能体做什么。是自动化任务、数据分析、自然语言处理,还是其他功能?明确目标可以帮助你选择合适的技术和方法。2.选择开发平台与工具开发AI智能体的软件时,你需要选择适合的编程语言、框架和工具。例如:编程语言:Python是最常用的语言,因为它有强大的AI/ML库,如TensorFlow、PyTorch、scikit-learn等。开发平台:你可以使用本地环境、
- 从简单到深刻的认知发展
AI架构设计之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
认知发展,人工智能,深度学习,神经网络,机器学习,自然语言处理,计算机视觉1.背景介绍认知发展是人类从简单到复杂的思维方式演进的过程,它涉及感知、记忆、语言、推理和决策等多个方面。随着人工智能技术的飞速发展,我们开始尝试用计算机模拟人类的认知能力,构建能够学习、理解和解决复杂问题的智能系统。从早期的符号逻辑到如今的深度学习,人工智能的发展经历了多个阶段。早期的人工智能研究主要集中在规则和逻辑推理上
- THULAC-Python 使用教程
时昕海Minerva
THULAC-Python使用教程THULAC-PythonTHULAC-Python:由清华大学开发的中文词法分析工具包,提供中文分词和词性标注功能。项目地址:https://gitcode.com/gh_mirrors/th/THULAC-Python项目介绍THULAC(THULexicalAnalyzerforChinese)是由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词
- 【Python】探索自然语言处理的利器:THULAC 中文词法分析库详解
技术无疆
Python人工智能自然语言处理人工智能python数据挖掘机器学习深度学习神经网络
THULAC(THULexicalAnalyzerforChinese)是清华大学开发的一款中文词法分析工具,集成了分词和词性标注两大功能。THULAC拥有强大的分词能力和高效的词性标注,适用于多种中文文本处理场景。该工具能够在保证高准确率的同时保持较快的处理速度,非常适合大规模中文数据处理。⭕️宇宙起点THULAC的特点安装与配置1.使用pip安装2.使用GitHub源码安装♨️使用方法1.分词
- 探索GigaChat与LangChain的完美结合:深度解析与实战指南
asdfujhgy
langchaineasyui前端python
探索GigaChat与LangChain的完美结合:深度解析与实战指南引言在人工智能的领域中,语言模型和嵌入技术正逐步改变我们与数据交互的方式。GigaChat作为一种创新的AI嵌入服务,结合LangChain可以提供强大的文本嵌入功能,促进自然语言处理任务的完成。本篇文章将带你深入了解如何结合GigaChat与LangChain进行文本嵌入,并提供实用的代码示例与解决方案。主要内容GigaCha
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多