- 【MATLAB源码-第157期】基于matlab的海马优化算法(SHO)机器人栅格路径规划,输出做短路径图和适应度曲线。
Matlab程序猿小助手
通信原理算法matlab机器人开发语言信息与通信启发式算法
操作环境:MATLAB2022a1、算法描述海马优化器(SeaHorseOptimizer,SHO)是一种近年来提出的新型启发式算法,其设计灵感来源于海洋中海马的行为模式,特别是它们在寻找食物和伴侣时表现出的独特策略。海马因其独特的外形和行为而著称于世,它们的这些行为为解决复杂的优化问题提供了新的思路。启发式算法通常模拟自然界中生物的行为或自然现象来解决数学和工程中的优化问题,海马优化器正是这样一
- python实现蚁群算法
孺子牛 for world
python算法开发语言
蚁群算法(AntColonyOptimization,ACO)是一种模拟蚂蚁觅食行为的启发式算法,常用于解决优化问题,如旅行商问题(TSP)、调度问题等。这里,将提供一个简化的蚁群算法实现,用于解决旅行商问题(TSP)。蚁群算法(ACO)解决TSP问题的基本步骤:初始化:设置蚂蚁数量、信息素挥发系数、信息素增加强度系数等参数,初始化信息素矩阵。构建解:每只蚂蚁随机选择起点,根据信息素浓度和启发式信
- MATLAB智能优化算法-学习笔记(1)——遗传算法求解0-1背包问题【过程+代码】
郭十六弟
算法matlab学习智能优化算法算法思想遗传算法求解0-1背包问题
一、问题描述(1)数学模型(2)模型总结目标函数:最大化背包中的总价值Z。约束条件:确保背包中的物品总重量不超过容量W。决策变量:每个物品是否放入背包,用0或1表示。这个数学模型是一个典型的0-1整数线性规划问题。由于其NP完全性,当问题规模较大时,求解此问题通常需要使用启发式算法(如遗传算法、动态规划、分支定界法等)来找到近似最优解。(3)实例讲解:0-1背包问题模型手动求解过程在0-1背包问题
- 基于强化学习的制造调度智能优化决策
松间沙路hba
智能调度强化学习制造智能排程车间调度APS强化学习
获取更多资讯,赶快关注上面的公众号吧!文章目录调度状态和动作设计调度状态的设计调度动作的设计基于RL的调度算法基于值函数的RL调度算法SARSAQ-learningDQN基于策略的RL调度算法基于RL的调度应用基于RL的单机调度基于RL的并行机调度基于RL的流水车间调度基于RL的作业车间调度基于RL的其他调度RL与元启发式算法在调度中的集成应用讨论问题领域算法领域应用领域参考文献生产调度作为制造系
- 遗传算法(Genetic Algorithm, GA)附代码案例
Cooku Black
机器学习python高级用法遗传算法启发式算法python
遗传算法(GeneticAlgorithm,GA)简介遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索算法,属于进化计算的一种。它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的,用于解决优化问题,是一种启发式算法。遗传算法的基本思想是通过模拟生物进化过程中的遗传和变异机制来优化问题的解。算法流程初始化:随机生成一组染色体(解的编码),构成初
- 10 中科院1区期刊优化算法|基于开普勒优化-卷积-双向长短期记忆网络-注意力时序预测Matlab程序KOA-CNN-BiLSTM-Attention
机器不会学习CSJ
时间序列预测算法网络matlabcnnlstm深度学习
文章目录一、开普勒优化算法二、CNN卷积神经网络三、BiLSTM双向长短期记忆网络四、注意力机制五、KOA-CNN-BiLSTM-Attention时间序列数据预测模型六、获取方式一、开普勒优化算法基于物理学定律的启发,开普勒优化算法(KeplerOptimizationAlgorithm,KOA)是一种元启发式算法,灵感来源于开普勒的行星运动规律。该算法模拟行星在不同时间的位置和速度,每个行星代
- 遗传算法实现
qq_51497433
matlab开发语言算法
遗传算法(GeneticAlgorithm,GA)是一种模拟自然选择和遗传学原理的搜索启发式算法,它是由约翰·霍兰德(JohnHolland)在20世纪70年代提出的。遗传算法在解决优化和搜索问题时非常有效,特别是在解空间大且复杂时。该算法使用了生物进化中的选择、交叉(杂交)和变异等概念。遗传算法通常包括以下步骤:初始化:随机生成一个初始种群。种群由一定数量的个体组成,每个个体代表一个解。评估:计
- 【MATLAB源码-第138期】基于matlab的D2D蜂窝通信仿真,对比启发式算法,最优化算法和随机算法的性能。
Matlab程序猿
通信系统MATLAB通信原理matlab信息与通信算法
操作环境:MATLAB2022a1、算法描述D2D蜂窝通信介绍D2D蜂窝通信允许在同一蜂窝网络覆盖区域内的终端设备直接相互通信,而无需数据经过基站或网络核心部分转发。这种通信模式具有几个显著优点:首先,它可以显著降低通信延迟,因为数据传输路径更短;其次,由于减少了基站的中转,可以提高数据传输的能效,从而延长终端设备的电池寿命;再次,D2D通信可以提高系统容量和频谱效率,因为同一地理区域内的频谱可以
- beamsearch的计算过程和代码实现
浅白Coder
自然语言处理自然语言处理深度学习人工智能神经网络
Beamsearch(束搜索)是一种用于生成序列的搜索算法,常用于序列生成任务,例如机器翻译、语音识别和文本生成。它是一种启发式算法,旨在在生成序列时平衡搜索空间的广度和深度。Beamsearch使用一个参数称为"beamwidth"(束宽度)来控制搜索的宽度,即在每个时间步骤选择保留的最有希望的候选项数量。在每个时间步骤,Beamsearch保留最有希望的K个候选项,其中K是束宽度。下面是Bea
- 矩形排料算法
monk比丘
笔记
这几天研究矩形排料(下料、排样)问题。通过对矩形的宽高聚类得到一个启发式算法,能实现很好的排样效果。
- 启发式算法
Sanchez·J
美赛启发式算法算法python数学建模
引入以一个著名的问题为例——旅行商问题(TSP)。假设有一个商人要拜访N个城市,每个城市只能拜访一次,最后回到原来出发的城市,求最短路径。这是一个NP-hard问题,即目前来看,要求出最优解只能枚举,复杂度为。n只要稍微大一点,就会无法在正常时间内求出来。现在我们退一步,要求在一定时间内求出来,但不要求最优的解,只要一个相对比较优秀的解就行,这就引出了启发式算法。启发式算法基于直观或经验构造的算法
- 2024年新提出的算法:(凤头豪猪优化器)冠豪猪优化算法Crested Porcupine Optimizer(附Matlab代码)
群智算法小狂人
智能优化算法元启发式算法算法matlab数学建模
本次介绍一种新的自然启发式元启发式算法——凤头豪猪优化器(CrestedPorcupineOptimizer,CPO)。该成果于2024年1月发表在中科院1区SCItop期刊Knowledge-BasedSystems(IF=8.8)上。1、简介受到凤头豪猪(CP)各种防御行为的启发,用于精确优化各种优化问题,特别是那些具有大规模攻击的问题。从最不具攻击性到最具攻击性,冠豪猪使用四种不同的保护机制
- 优化算法改进的三个定性分析实验:收敛行为分析,种群多样性分析和探索开发分析
树洞优码
算法matlab启发式算法代码规范
蛇优化算法是2022年提出的一种新的元启发式算法,发表在一区期刊Knowledge-BasedSystems,该算法是一种模仿蛇特殊交配行为的新型智能优化算法。对于每条蛇(雄性/雌性),如果在食物数量足够,温度很低的条件下,就会努力得到最好的伴侣。本期以蛇优化器SnakeOptimizer(SO)为例,在23个基准测试函数上进行定性分析实验,这三个实验可以大大增加论文的说服力和提升文章质量,可以增
- Linux调度-反转楼梯最后期限调度算法
人间正道是沧桑a
(反转楼梯最后期限调度算法)TheRotatingStaircaseDeadlineScheduler简称RSDLCPU调度似乎是那些永远未完成的工作之一。开发人员可以在CPU调度器上工作一段时间,并使其工作得更好,但总有一些工作负载不能像用户希望的那样得到很好的服务。交互系统的用户尤其倾向于对调度器延迟敏感。作为回应,当前的调度器已经发展出一组精心设计的启发式算法,它们试图检测哪些进程是真正交互
- 2019-03-28派森学习第129天
每日派森
帮师妹装了一晚上tensorflow,按照自己的前天安装的流程总还会报错,在加上她的电脑特别慢,真无语了!今晚学习一会儿模拟退火算法吧,白天都搜索了,一直没有来的及学习。5种启发式算法:1首先要明白全局最小和全局极小值:2模拟退火算法的基本思想:在每一步都有一定概率接受比当前更差的结果,从而有助于跳出局部极小值,找到全局最小值。算法框图
- 2024年新提出的算法:一种新的基于数学的优化算法——牛顿-拉夫森优化算法|Newton-Raphson-based optimizer,NRBO
项目申报小狂人
智能优化算法元启发式算法MATLAB算法数学建模
1、简介开发了一种新的元启发式算法——Newton-Raphson-Based优化器(NRBO)。NRBO受到Newton-Raphson方法的启发,它使用两个规则:Newton-Raphson搜索规则(NRSR)和TrapAvoidance算子(TAO)以及几组矩阵来探索整个搜索过程,以进一步探索最佳结果。NRSR使用Newton-Raphson方法来提高NRBO的探索能力,并提高收敛速度以达到
- 2020-05-20
bokli_dw
启发式算法:与过去的经验有关空缺几页少一张回顾遗传算法:交叉变异的概率每年考试是开卷做控制、天线、光通信。你的研究方向是什么?你觉得哪门智能信息处理方法可以在你的研究方向上很有帮助??第九章多传感器融合技术知识表示-模糊集-粗集神经网络-机器学习最重要的是搜索--智能算法:遗传、免疫、蚁群算法。每个算法在哪方面运用起来最得心应手就用哪个fusion--融合无人驾驶:融合很多的信息--信息融合是将来
- 启发式算法解决TSP、0/1背包和电路板问题
NK.MainJay
启发式算法算法
1.LasVegas题目设计一个LasVegas随机算法,求解电路板布线问题。将该算法与分支限界算法结合,观察求解效率。代码python代码如下:#-*-coding:utf-8-*-"""@Date:2024/1/4@Time:16:21@Author:MainJay@Desc:LasVegas算法解决电路问题"""importheapqimportrandommaps=[]nums=8fori
- 基于黄金正弦算法的函数寻优算法
心️升明月
最优化问题matlabmatlab黄金正弦算法
文章目录一、理论基础1、算法原理2、算法伪代码二、仿真实验与分析三、参考文献一、理论基础1、算法原理黄金正弦算法(Goldensinealgorithm,Gold-SA)是Tanyildizi等人于2017年提出的新型元启发式算法,该算法的设计灵感来源于数学中的正弦函数,该算法利用数学中的正弦函数进行计算迭代寻优,其优点是收敛速度快、鲁棒性好、易于实现、调节的参数和运算符少。Gold-SA根据正弦
- 炼钢-连铸生产动态调度模型(加启发式算法步骤)
Han-torch
启发式算法动态调度
最近阅读了一些文献来了解动态调度的问题,有几篇文章觉得总结整理的很到位。《炼钢-连铸生产调度模型及启发式算法》——刘光航《钢铁生产动态调度理论研究与工程应用综述》——常春光《炼钢-连铸混合优化调度方法及应用(博士学位论文)》——王秀英首先整理一下看过的文献资料,关于动态调度研究方法应该可以分为四类:(1)基于模型的方法1.精确模型:运筹学方法,包括线性规划、动态规划、排队论、网络与图论等2.近似模
- TSOA-TCN-SelfAttention基于凌日优化时间卷积网络融合多头自注意力机制的多特征回归预测程序,还未发表!
预测及优化
网络回归数据挖掘
适用平台:Matlab2023版及以上凌日优化算法(TransitSearchOptimizationAlgorithm,TSOA)是2022年8月提出的一种新颖的元启发式算法,当一颗行星经过其恒星前方时,会导致恒星的亮度微弱地下降,这被称为凌日现象。该算法基于著名的系外行星探索方法,即凌日搜索(TS)。在凌日算法中,通过研究在一定间隔内从恒星接收到的光,检查亮度的变化,如果观察到接收到的光量减少
- 新算法!!! TSOA-CNN-LSTM-Attention凌日优化卷积、长短期记忆网络融合注意力机制的多变量回归预测程序,数据由Excel导入,直接运行
预测及优化
算法cnnlstmmatlab网络回归
适用平台:Matlab2023版及以上凌日优化算法(TransitSearchOptimizationAlgorithm,TSOA)是2022年8月提出的一种新颖的元启发式算法,当一颗行星经过其恒星前方时,会导致恒星的亮度微弱地下降,这被称为凌日现象。该算法基于著名的系外行星探索方法,即凌日搜索(TransitSearch,TS)。在凌日算法中,通过研究在一定间隔内从恒星接收到的光,检查亮度的变化
- 【机器学习】半监督学习
十年一梦实验室
机器学习学习人工智能深度学习
一、问题假设要利用无标签样本进行训练,必须对样本的分布进行假设?二、启发式算法自训练和协同训练是两种常用的半监督学习的方法,它们的主要区别在于使用的模型的数量和类型。自训练:自训练是一种使用单个模型的半监督学习的方法,它的过程是先用有标签的数据训练一个初始的模型,然后用这个模型对无标签的数据进行预测,选择一些预测结果最有信心的数据作为新的有标签的数据,加入到原来的有标签的数据集中,再用这个扩充的数
- 粒子群算法PSO优化BP神经网络(PSO-BP)回归预测-Matlab代码实现
Matlab神经网络深度学习
神经网络回归matlab机器学习源代码管理性能优化
一、粒子群算法PSO(代码获取:评论区或者私信获取)粒子群优化算法(Particleswarmoptimization,PSO)是由Kennedy等人于1995年提出的一种经典的启发式算法。PSO受启发于对鸟群捕食行为的研究,是通过群体中的个体之间的协作和信息共享,使得群体位置在解空间中从无序到有序,群体成员通过学习自己和其他成员的经验,不断改变搜索模式,从而寻得最优解。PSO由于具有调整参数少、
- 前端性能优化-加载优化
渔老师
前端cssjavascripthtml
前端性能优化-加载优化1.资源加载优先级在浏览器发起网络请求时,并非每个字节都具有相同的优先级,所以,浏览器通常会对所要加载的内容进行推测,将相对重要的信息先呈现给用户。比如浏览器一般会先加载CSS,再去加载JavaScript脚本和图像文件。当然,浏览器的判断并不一定都是准确的,下面就来看看如何影响浏览器对资源加载的优先级。浏览器是基于自身的启发式算法,会对资源的重要性进行判断,来划分优先级,通
- UAV | 多算法在多场景下的无人机路径规划(Matlab)
KAU的云实验台
智能优化算法MATLAB无人机路径规划UAV算法无人机matlab
近年来,无人机(unmannedaerialvehicle,UAV)由于其灵活度高、机动性强、安全风险系数小、成本低等特点,被广泛应用于搜索巡逻、侦察监视、抢险救灾、物流配送、电力巡检、农业灌溉等军用或民用任务。路径规划是无人机执行任务的关键,也是自主无人机在工程应用上的主要挑战。现有的无人机路径规划算法主要分为经典算法和元启发式算法,经典算法包括:A*算法、快速搜索随机数RRT等,但这些算法在面
- 双语!性能优越|融合黏菌和差分变异的量子哈里斯鹰算法SDMQHHO
KAU的云实验台
哈里斯鹰优化算法MATLABpython算法pythonmatlab
前面的文章里卡卡介绍了哈里斯鹰优化算法(HarrisHawksOptimization,HHO).HHO是Heidari等[1]于2019年提出的一种新型元启发式算法,设计灵感来源于哈里斯鹰在捕食猎物过程中的合作行为以及突然袭击的狩猎风格,具有需调参数少、原理简单易实现、局部搜索能力强等优点,在许多工程领域得到广泛的应用。然而,HHO算法虽然在CEC2005中有较好的性能,但HHO在CEC2017
- SVM线性支持向量机(二)(python实现)
你的梦想是?
机器学习支持向量机算法机器学习
3.求解根据带约束条件的目标函数最佳参数α\alphaα在硬间隔的线性可分支持向量机和软间隔的支持向量机中我们通过拉格朗日函数,对偶问题将带约束条件的求解多个最优参数的目标函数转化求解一个最优参数的目标函数。式1.26和式2.8,当时没有解释如何求最优参数α\alphaα,这里使用SMO序列最小优化算法求解最佳参数α\alphaα,SMO算法是一种启发式算法,他与坐标下降法类似。3.1坐标下降法坐
- 2023年智能算法之双曲正弦余弦优化器(SCHO),原理公式详解,附matlab代码
今天吃饺子
matlab开发语言
双曲正弦余弦优化器(SinhCoshOptimizer,SCHO)是一种新型元启发式算法,该算法基于双曲正弦和双曲余弦特性的数学启发,具有进化能力强、搜索速度快、寻优能力强的特点。该成果于2023年10月发表在SCI一区,Top顶刊Knowledge-BasedSystems上。SCHO的灵感来源有三点。首先,如何在勘探和开发之间取得平衡是一个巨大的挑战,其次,面对复杂多样的问题,仍需要提出新的元
- 基于多元宇宙MVO算法的多目标优化(Matlab代码)
ByteWhisper
算法matlab数据结构Matlab
基于多元宇宙MVO算法的多目标优化(Matlab代码)多目标优化是在现实世界中广泛应用的一个重要问题。解决多目标优化问题的一个有效方法是使用元启发式算法,其中多元宇宙优化(Multi-VerseOptimization,MVO)算法是一种基于宇宙和多元宇宙的元启发式算法。本文将介绍如何使用Matlab实现基于多元宇宙MVO算法的多目标优化。首先,我们需要定义多目标优化问题。在本文中,我们将考虑一个
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l