关于蒙特卡罗法计算圆周率的Python代码

【问题描述】

求解圆周率可以采用蒙特卡罗方法,在一个正方形中撒点,根据在半径为1的圆内点的数量占总撒点数的比例计算圆周率值。

请以123作为随机数种子,获得用户输入的撒点数量,编写程序输出圆周率的值,保留小数点后6位。

【样例输入】

1024
【样例输出】

3.156250

我查找的网上一些Python代码要么没注释,要么误差较大,自己在参考一些博客的代码基础上,给出自己的代码,至于蒙特卡罗法自己画一画

import random
import math


def calculate_pi(n):
    # 随机数种子
    random.seed(123)
    num_local = 0
    for i in range(n):
        # 坐标,范围在 -1 到 1
        x, y = random.uniform(-1, 1), random.uniform(-1, 1)
        r = math.sqrt(x ** 2 + y ** 2)
        # 判断圆内的数量
        if r <= 1:
            num_local += 1
    return 4 * num_local / n


# 输入撒点数量,代表正方形面积
numbers = eval(input())
# 输出pi
pi = calculate_pi(numbers)
print(f"{pi:.6f}")

输出结果:

你可能感兴趣的:(python)