- 智能体认识
澄子兮
Dify人工智能
什么是智能体?智能体是指能够感知环境、进行决策并采取行动的系统。它们可以是软件程序、机器人或其他自动化设备,具备一定的自主性和智能性,智能体通过与环境的交互,不断学习和适应,从而实现特定的目标。其核心在于自主性,智能体能够根据环境的变化调整行为,展现出一定的智能水平。智能体可分为物理智能体与虚拟智能体,前者如机器人,后者则包括各种软件代理。智能体的特征主要包括自主性、适应性、互动性和学习能力。自主
- 机器学习是怎么一步一步由神经网络发展到今天的Transformer架构的?
yuanpan
机器学习神经网络transformer
机器学习和神经网络的发展经历了一系列重要的架构和技术阶段。以下是更全面的总结,涵盖了从早期神经网络到卷积神经网络之前的架构演变:1.早期神经网络:感知机(Perceptron)时间:1950年代末至1960年代。背景:感知机由FrankRosenblatt提出,是第一个具有学习能力的神经网络模型。它由单层神经元组成,可以用于简单的二分类任务。特点:输入层和输出层之间直接连接,没有隐藏层。使用简单的
- AI人工智能深度学习算法:搭建可拓展的深度学习模型架构
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
深度学习、模型架构、可拓展性、神经网络、机器学习1.背景介绍深度学习作为人工智能领域最前沿的技术之一,在图像识别、自然语言处理、语音识别等领域取得了突破性的进展。深度学习模型的成功离不开其强大的学习能力和可拓展性。本文将深入探讨深度学习算法的原理、模型架构设计以及可拓展性的关键要素,并通过代码实例和实际应用场景,帮助读者理解如何搭建可拓展的深度学习模型架构。2.核心概念与联系深度学习的核心概念是人
- 量子神经网络(Quantum Neural Network):结合量子计算的 AI 新探索
盼达思文体科创
人工智能和深度学习量子计算人工智能神经网络
一、引言在当今科技飞速发展的时代,人工智能(AI)和量子计算成为了两个备受关注的领域。量子神经网络(QuantumNeuralNetwork,QNN)作为这两个领域的交叉点,正吸引着越来越多的研究兴趣。QNN试图将量子计算的强大能力与传统神经网络的学习能力相结合,为解决复杂的人工智能问题提供新的思路和方法。二、量子计算基础(一)量子比特(Qubit)量子比特是量子计算的基本信息单位,与传统的比特不
- AGI的学习与适应能力
AGI大模型与大数据研究院
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
“AGI的学习与适应能力”1.背景介绍1.1人工通用智能(AGI)的定义人工通用智能(ArtificialGeneralIntelligence,AGI)是指能够像人类一样具有广泛的理解和学习能力、可以完成多种复杂任务的人工智能系统。与狭义人工智能(NarrowAI)专注于特定领域和特定任务不同,AGI旨在模拟人类整体认知能力,包括感知、推理、学习、计划、创造力和自我意识等。1.2AGI的重要性和
- Datawhale AI夏令营第四期 AIGC方向 task02学习笔记
流火_授衣
AI人工智能AIGC学习
探探前沿:了解一下AI生图技术的能力&局限今天我们的任务是对baseline的代码有一个更加细致的理解,然后我们会学习如何借助AI来提升我们的自学习能力,从而帮助大家在后面的学习工作中如何从容迎接各种挑战。授人以鱼不如授人以渔,你可以从中学大模型的提问技巧来实现快速学习,学会如何制作一个话剧连环画。‘自其不变者而观之,则物与我皆无尽也’,拥抱AI、学习AI、运用AI解决各种变化的问题,一起加油!!
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- 11页PDF | DeepSeek平民化:AI助力数据治理整体方案(附下载)
Leo.yuan
大数据人工智能
一、前言这份报告介绍了一种基于人工智能(AI)的智能数据治理整体方案,旨在通过AI的自然语言处理、学习能力、理解与推理能力等技术手段,解决传统数据治理中存在的问题,提升企业数据管理能力和效率。方案以高质量数据资产知识库为基础,结合智能化技术工具箱,针对数据治理中的痛点场景(如文档编写、元数据管理、数据标准、数据质量、数据安全、数据资产盘点等)提供智能化解决方案。通过AI技术的应用,方案能够实现数据
- PID神经元网络控制的MATLAB实现与分析
木子算法
数学建模MATLAB案例分析matlab神经网络
PID神经元网络控制的MATLAB实现与分析一、引言在工业控制和自动化领域,PID(比例-积分-微分)控制器是应用最为广泛的控制策略之一。传统的PID控制器结构简单、易于实现,但在处理复杂非线性系统时,其控制效果往往不尽如人意。PID神经元网络结合了PID控制的思想和神经网络的自学习能力,能够自适应地调整控制参数,从而更好地应对复杂系统的控制问题。本文将详细介绍基于MATLAB实现的PID神经元网
- 通用大模型VS垂直大模型,你更青睐哪一方?
109702008
人工智能杂谈人工智能
AI大模型之辩:通用与垂直,谁将引领未来?在人工智能(AI)领域,大模型技术的崛起无疑为整个行业带来了革命性的变革。然而,随着技术的深入发展,AI大模型的战场似乎正在悄然分化,形成了通用大模型与垂直大模型两大阵营。两者各有千秋,各有其适用的场景和优势,那么在这场没有硝烟的战争中,究竟谁将引领未来呢?通用大模型,以其广泛的适用性和强大的学习能力,成为AI领域的明星产品。它能够在多个领域和场景下展现出
- 游戏测试工程师面试,常问的问题有哪些?
程序员小雷
游戏面试职场和发展压力测试测试用例单元测试功能测试
一般会在面试中了解以下方面:1.游戏热情,理解程度·玩过哪些游戏,这些游戏玩过多长时间,玩到什么样的水平,在游戏里花过多少钱·你觉得游戏里,xxx的设计如何,评价一下2.编程、测试相关·学过哪些计算机课程,达到何种水平·(给出一些实际的技术问题,看如何解决)·对软件测试有哪些了解·做过软件测试的话,做过什么项目,做到什么水平·没做过的话,学过什么相关知识3.学习能力与逻辑思维·在学校的学业水平如何
- 神经进化算法(Neuroevolution) 原理与代码实例讲解
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
神经进化算法,Neuroevolution,进化算法,深度学习,机器学习,遗传算法,神经网络,代码实例1.背景介绍在机器学习领域,神经网络凭借其强大的学习能力和泛化能力,在图像识别、自然语言处理、语音识别等领域取得了显著的成就。然而,传统的神经网络训练方法通常依赖于人工设计的网络结构和参数初始化,这往往需要大量的经验和试错,并且难以找到最优的网络结构和参数。神经进化算法(Neuroevolutio
- 教培机构的核心竞争力:项目管理如何赋能教学与运营?
团队协作工具
教培机构项目管理教培机构项目管理是指通过科学的管理方法和工具,对教育培训机构的各项活动进行规划、组织、实施和监控,以确保教学目标的高效达成和机构的可持续发展。以下是教培机构项目管理的核心内容及实施策略:一、项目管理的核心内容课程设计与开发○需求分析:通过市场调研、家长反馈和学生评估,明确课程需求,确定教学目标。○课程规划:根据学生的年龄特点和学习能力,设计系统化、层次化的课程体系。○资源整合:结合
- 探索Omniglot:一个无尽的手写字符集合
宋溪普Gale
探索Omniglot:一个无尽的手写字符集合omniglotomniglot-一个包含大量不同语言手写字符图像的数据集,用于机器学习模型的训练和评估。项目地址:https://gitcode.com/gh_mirrors/om/omniglot项目简介Omniglot是由BrendenLake等人创建的一个开源项目,其目标是提供一个广泛的手写字符集,用于研究人类和机器的学习能力。这个项目不仅仅是一
- AI:重塑未来的深度探索与实践
2501_90713682
人工智能科技微信
在21世纪的科技洪流中,人工智能(AI)不仅是技术进步的象征,更是推动社会变革的关键力量。从理论突破到实践应用,AI正以前所未有的深度和广度,重塑着我们的生产、生活方式以及社会结构。本文旨在深入探讨AI的核心技术、广泛应用、未来趋势、面临的挑战以及应对策略,为读者提供一个全面、深入且富有前瞻性的视角。一、AI核心技术:深度学习与智能进化的基石AI的核心在于其强大的数据处理与学习能力,这主要得益于深
- 什么AGI
MonkeyKing.sun
agi
通用人工智能(ArtificialGeneralIntelligence,AGI)是人工智能领域的一个概念,指能够在广泛的认知任务中展现出与人类相当,甚至超越人类能力的智能系统。与当前大量应用的、针对特定任务设计的狭义人工智能(如专注于图像识别的人脸识别系统、专注于语言翻译的翻译软件等)不同,AGI具备以下显著特征:自适应学习能力:能从各种经验中学习新知识,并迅速适应全新的环境与任务。例如,面对一
- DeepSeek如何重塑我的编程学习:计算机新生的AI实践
EnigmaCoder
DeepSeek学习人工智能
目录前言邂逅DeepSeek:从困惑到惊喜初学编程的困境DeepSeek的优势️DeepSeek在编程学习中的运用注释算法逐步分析调试帮助跨语言迁移学习AI时代学习方法论革新知识获取方式转变新型学习能力培养反思与展望反思展望总结前言大家好!我是EnigmaCoder,本文我将介绍我的AI编程学习之旅。春节期间,DeepSeek横空出世,迅速登顶热榜。它功能强大,精准答疑、高效创作,瞬间点燃大众热情
- 深度应用场景:DeepSeek —— 探索AI赋能的智慧未来
人工智能专属驿站
人工智能
深度应用场景:DeepSeek——探索AI赋能的智慧未来随着人工智能的迅猛发展,数据的价值已不再局限于简单的存储与处理,它们正变得更加智能与高效。DeepSeek,这一创新的AI技术平台,正以其独特的深度学习能力,开启了各行各业的智能化变革。让我们走进一个由DeepSeek打造的深度应用场景,探索它如何推动未来的发展。1.智能医疗:精准诊断,拯救生命想象一下,医生们不再是唯一的诊断专家,而是与AI
- 深度揭秘 DeepSeek:2025 最新版,带你从 0 基础到熟练运用
小白教程
AI写作人工智能AIGC
文章目录前言一、deepseek使用技巧大全下载二、使用步骤1.准备篇:快速上手DeepSeekAI平台2.基础对话篇:有效提问与魔法指令3.效率飞跃篇:文件处理与代码生成4.场景实战篇:解决真实世界问题5.高手进化篇:专业生产力工具6.自我学习能力提升7.编程教练篇:代码入门与面试准备8.创作进阶篇:小说创作与视频脚本总结前言这是一篇关于DeepSeekAI平台使用指南的文章,主要介绍了从注册到
- 《DeepSeek训练算法:开启高效学习的新大门》
人工智能深度学习
在人工智能的浪潮中,大语言模型的发展日新月异。DeepSeek作为其中的佼佼者,凭借其独特的训练算法和高效的学习能力,吸引了众多目光。今天,就让我们深入探究DeepSeek训练算法的独特之处,以及它是如何保证模型实现高效学习的。一、独特的架构基础DeepSeek以Transformer架构为基石,但并非简单沿用,而是进行了深度创新。Transformer架构的核心是注意力机制,这让模型在处理序列数
- 小学生数学测试软件编写分析,小学数学测试的质量分析
达拉斯手记
小学生数学测试软件编写分析
六年级数学期末考试质量分析一、试卷评价本试卷涵盖面比较广,考查了学生多方面的能力,试卷紧扣新课程理念,从概念、计算、操作、应用等方面考查学生的双基、思维、操作、问题解决的能力,可以说全面考查了学生的综合学习能力。这次考试体现了课程改革的一些成果,也暴露了我们教学中存在的不足,为今后进一步改进教学工作提供了宝贵的经验。试卷全面考查学生对教材中的基础知识掌握情况、基本技能的形成情况及对数学知识的灵活应
- 大型语言模型的核心机制解析
耶耶Norsea
网络杂烩人工智能Deepseek
摘要大型语言模型的核心机制依赖于Transformer架构,该架构通过嵌入层将输入数据转换为向量形式,并结合位置编码以保留序列中单词的顺序信息。随后,这些向量进入多头自注意力层,能够同时关注输入序列的不同部分。自注意力层的输出经过残差连接和层归一化处理,以增强模型的学习能力和稳定性。接着,数据流经前馈网络进一步处理,最终再次通过残差连接和层归一化,得到编码器层的输出。模型性能高度依赖大规模和高质量
- AI时代前端开发的学习能力:与时俱进的挑战与机遇
前端
在飞速发展的科技浪潮中,前端开发领域正经历着翻天覆地的变化。得益于AI写代码工具的兴起,低代码/无代码开发模式日益普及,各种新技术、新框架、新工具层出不穷,这无疑对前端工程师的学习能力提出了更高的要求。本文将探讨AI时代前端工程师所需的学习能力,以及如何应对这些挑战与机遇,最终在AI浪潮中立于不败之地。AI如何改变前端开发模式传统的软件开发流程往往需要大量的代码编写和调试,耗时费力。而AI的介入,
- AI时代前端开发的学习能力:与时俱进的挑战与机遇
前端
在飞速发展的科技浪潮中,前端开发领域正经历着翻天覆地的变化。得益于AI写代码工具的兴起,低代码/无代码开发模式日益普及,各种新技术、新框架、新工具层出不穷,这无疑对前端工程师的学习能力提出了更高的要求。本文将探讨AI时代前端工程师所需的学习能力,以及如何应对这些挑战与机遇,最终在AI浪潮中立于不败之地。AI如何改变前端开发模式传统的软件开发流程往往需要大量的代码编写和调试,耗时费力。而AI的介入,
- IT行业方向细分,如何做到专家水平——1.运维
F——
idea运维云计算学习aws边缘计算
通常来说,成为专家需要的时间可能在3到8年之间,具体取决于学习强度、项目经验和个人的学习能力。例如,云计算运维可能需要3-5年,而AIOps因为涉及AI技术,可能需要更长时间,大约5-8年。证书是一个重要因素,比如AWSCertifiedSolutionsArchitect、CKA、RHCE等。工作年限虽然重要,但实际项目经验更为关键,比如是否处理过大规模集群管理、高并发故障处理等。此外,社区贡献
- AI前端开发的自主学习之路:效率与深度并存
前端
在飞速发展的AI时代,前端开发面临着巨大的挑战。技术更新迭代日新月异,知识体系庞大而复杂,如何高效地学习并掌握这些新技术,成为了每一位前端开发者必须面对的问题。而自主学习能力,则成为了决定开发者竞争力的关键因素。本文将探讨如何在AI工具的辅助下,构建高效的自主学习路径,实现效率与深度并存,最终成为一名优秀的AI时代前端开发者。我们将会重点介绍如何利用AI代码生成器等工具来提升学习效率。AI工具赋能
- AI前端开发的自主学习之路:效率与深度并存
前端
在飞速发展的AI时代,前端开发面临着巨大的挑战。技术更新迭代日新月异,知识体系庞大而复杂,如何高效地学习并掌握这些新技术,成为了每一位前端开发者必须面对的问题。而自主学习能力,则成为了决定开发者竞争力的关键因素。本文将探讨如何在AI工具的辅助下,构建高效的自主学习路径,实现效率与深度并存,最终成为一名优秀的AI时代前端开发者。我们将会重点介绍如何利用AI代码生成器等工具来提升学习效率。AI工具赋能
- 【2025版】最新AI大模型NLP全面解析,零基础入门到精通,收藏这篇就够了
程序员二飞
人工智能自然语言处理服务器学习知识图谱
近年来,随着深度学习技术的飞速发展,AI大模型作为人工智能领域的重要研究对象,正逐步成为学术界和产业界广泛关注的热点议题。AI大模型,作为一类具备庞大参数规模与卓越学习能力的神经网络模型,如BERT、GPT等,已在自然语言处理、计算机视觉等多个领域展现出卓越成效,极大地推动了相关领域的技术进步。前排提示,文末有大模型AGI-CSDN独家资料包哦!AI大模型的价值不仅体现于其庞大的参数规模与强大的学
- 从量化投资到AI大模型:DeepSeek创始人梁文锋的创新之路
何以问天涯
DeepSeek人工智能
一、学术的启蒙:学霸的崭露头角 梁文锋的成长故事始于1985年,他出生在广东省湛江市的一个普通家庭。从小,梁文锋就展现出对知识的强烈渴望和非凡的学习能力,尤其在数学领域,他总是能够轻松解决复杂的难题,成为学校里备受瞩目的“学霸”。 2002年,年仅17岁的梁文锋以吴川一中的优异成绩考入浙江大学,选择了电子信息工程专业。在浙江大学,梁文锋如鱼得水,不仅在学业上取得了优异的成绩,还积极参与各类学术
- Gemini 2.0 FlashThinking Experimental答对这个问题只需要提示一次
stereohomology
人工智能
我用同一个账号再问同一个问题,给出的解答就总是正确的了。不知道是不是它记住了我的账号?还是在问答的过程中具有自我学习能力?——如果是第一种情况,换其其他账号再问就还会出错。但是,我要记住第一次提问它的回答是错误的;DeepSeekR1首次回答就正确。目前来说,这两个模型的推理能力的确最好。其它的推理能力都还是垃圾。
- Hadoop(一)
朱辉辉33
hadooplinux
今天在诺基亚第一天开始培训大数据,因为之前没接触过Linux,所以这次一起学了,任务量还是蛮大的。
首先下载安装了Xshell软件,然后公司给了账号密码连接上了河南郑州那边的服务器,接下来开始按照给的资料学习,全英文的,头也不讲解,说锻炼我们的学习能力,然后就开始跌跌撞撞的自学。这里写部分已经运行成功的代码吧.
在hdfs下,运行hadoop fs -mkdir /u
- maven An error occurred while filtering resources
blackproof
maven报错
转:http://stackoverflow.com/questions/18145774/eclipse-an-error-occurred-while-filtering-resources
maven报错:
maven An error occurred while filtering resources
Maven -> Update Proje
- jdk常用故障排查命令
daysinsun
jvm
linux下常见定位命令:
1、jps 输出Java进程
-q 只输出进程ID的名称,省略主类的名称;
-m 输出进程启动时传递给main函数的参数;
&nb
- java 位移运算与乘法运算
周凡杨
java位移运算乘法
对于 JAVA 编程中,适当的采用位移运算,会减少代码的运行时间,提高项目的运行效率。这个可以从一道面试题说起:
问题:
用最有效率的方法算出2 乘以8 等於几?”
答案:2 << 3
由此就引发了我的思考,为什么位移运算会比乘法运算更快呢?其实简单的想想,计算机的内存是用由 0 和 1 组成的二
- java中的枚举(enmu)
g21121
java
从jdk1.5开始,java增加了enum(枚举)这个类型,但是大家在平时运用中还是比较少用到枚举的,而且很多人和我一样对枚举一知半解,下面就跟大家一起学习下enmu枚举。先看一个最简单的枚举类型,一个返回类型的枚举:
public enum ResultType {
/**
* 成功
*/
SUCCESS,
/**
* 失败
*/
FAIL,
- MQ初级学习
510888780
activemq
1.下载ActiveMQ
去官方网站下载:http://activemq.apache.org/
2.运行ActiveMQ
解压缩apache-activemq-5.9.0-bin.zip到C盘,然后双击apache-activemq-5.9.0-\bin\activemq-admin.bat运行ActiveMQ程序。
启动ActiveMQ以后,登陆:http://localhos
- Spring_Transactional_Propagation
布衣凌宇
springtransactional
//事务传播属性
@Transactional(propagation=Propagation.REQUIRED)//如果有事务,那么加入事务,没有的话新创建一个
@Transactional(propagation=Propagation.NOT_SUPPORTED)//这个方法不开启事务
@Transactional(propagation=Propagation.REQUIREDS_N
- 我的spring学习笔记12-idref与ref的区别
aijuans
spring
idref用来将容器内其他bean的id传给<constructor-arg>/<property>元素,同时提供错误验证功能。例如:
<bean id ="theTargetBean" class="..." />
<bean id ="theClientBean" class=&quo
- Jqplot之折线图
antlove
jsjqueryWebtimeseriesjqplot
timeseriesChart.html
<script type="text/javascript" src="jslib/jquery.min.js"></script>
<script type="text/javascript" src="jslib/excanvas.min.js&
- JDBC中事务处理应用
百合不是茶
javaJDBC编程事务控制语句
解释事务的概念; 事务控制是sql语句中的核心之一;事务控制的作用就是保证数据的正常执行与异常之后可以恢复
事务常用命令:
Commit提交
- [转]ConcurrentHashMap Collections.synchronizedMap和Hashtable讨论
bijian1013
java多线程线程安全HashMap
在Java类库中出现的第一个关联的集合类是Hashtable,它是JDK1.0的一部分。 Hashtable提供了一种易于使用的、线程安全的、关联的map功能,这当然也是方便的。然而,线程安全性是凭代价换来的――Hashtable的所有方法都是同步的。此时,无竞争的同步会导致可观的性能代价。Hashtable的后继者HashMap是作为JDK1.2中的集合框架的一部分出现的,它通过提供一个不同步的
- ng-if与ng-show、ng-hide指令的区别和注意事项
bijian1013
JavaScriptAngularJS
angularJS中的ng-show、ng-hide、ng-if指令都可以用来控制dom元素的显示或隐藏。ng-show和ng-hide根据所给表达式的值来显示或隐藏HTML元素。当赋值给ng-show指令的值为false时元素会被隐藏,值为true时元素会显示。ng-hide功能类似,使用方式相反。元素的显示或
- 【持久化框架MyBatis3七】MyBatis3定义typeHandler
bit1129
TypeHandler
什么是typeHandler?
typeHandler用于将某个类型的数据映射到表的某一列上,以完成MyBatis列跟某个属性的映射
内置typeHandler
MyBatis内置了很多typeHandler,这写typeHandler通过org.apache.ibatis.type.TypeHandlerRegistry进行注册,比如对于日期型数据的typeHandler,
- 上传下载文件rz,sz命令
bitcarter
linux命令rz
刚开始使用rz上传和sz下载命令:
因为我们是通过secureCRT终端工具进行使用的所以会有上传下载这样的需求:
我遇到的问题:
sz下载A文件10M左右,没有问题
但是将这个文件A再传到另一天服务器上时就出现传不上去,甚至出现乱码,死掉现象,具体问题
解决方法:
上传命令改为;rz -ybe
下载命令改为:sz -be filename
如果还是有问题:
那就是文
- 通过ngx-lua来统计nginx上的虚拟主机性能数据
ronin47
ngx-lua 统计 解禁ip
介绍
以前我们为nginx做统计,都是通过对日志的分析来完成.比较麻烦,现在基于ngx_lua插件,开发了实时统计站点状态的脚本,解放生产力.项目主页: https://github.com/skyeydemon/ngx-lua-stats 功能
支持分不同虚拟主机统计, 同一个虚拟主机下可以分不同的location统计.
可以统计与query-times request-time
- java-68-把数组排成最小的数。一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的。例如输入数组{32, 321},则输出32132
bylijinnan
java
import java.util.Arrays;
import java.util.Comparator;
public class MinNumFromIntArray {
/**
* Q68输入一个正整数数组,将它们连接起来排成一个数,输出能排出的所有数字中最小的一个。
* 例如输入数组{32, 321},则输出这两个能排成的最小数字32132。请给出解决问题
- Oracle基本操作
ccii
Oracle SQL总结Oracle SQL语法Oracle基本操作Oracle SQL
一、表操作
1. 常用数据类型
NUMBER(p,s):可变长度的数字。p表示整数加小数的最大位数,s为最大小数位数。支持最大精度为38位
NVARCHAR2(size):变长字符串,最大长度为4000字节(以字符数为单位)
VARCHAR2(size):变长字符串,最大长度为4000字节(以字节数为单位)
CHAR(size):定长字符串,最大长度为2000字节,最小为1字节,默认
- [强人工智能]实现强人工智能的路线图
comsci
人工智能
1:创建一个用于记录拓扑网络连接的矩阵数据表
2:自动构造或者人工复制一个包含10万个连接(1000*1000)的流程图
3:将这个流程图导入到矩阵数据表中
4:在矩阵的每个有意义的节点中嵌入一段简单的
- 给Tomcat,Apache配置gzip压缩(HTTP压缩)功能
cwqcwqmax9
apache
背景:
HTTP 压缩可以大大提高浏览网站的速度,它的原理是,在客户端请求网页后,从服务器端将网页文件压缩,再下载到客户端,由客户端的浏览器负责解压缩并浏览。相对于普通的浏览过程HTML ,CSS,Javascript , Text ,它可以节省40%左右的流量。更为重要的是,它可以对动态生成的,包括CGI、PHP , JSP , ASP , Servlet,SHTML等输出的网页也能进行压缩,
- SpringMVC and Struts2
dashuaifu
struts2springMVC
SpringMVC VS Struts2
1:
spring3开发效率高于struts
2:
spring3 mvc可以认为已经100%零配置
3:
struts2是类级别的拦截, 一个类对应一个request上下文,
springmvc是方法级别的拦截,一个方法对应一个request上下文,而方法同时又跟一个url对应
所以说从架构本身上 spring3 mvc就容易实现r
- windows常用命令行命令
dcj3sjt126com
windowscmdcommand
在windows系统中,点击开始-运行,可以直接输入命令行,快速打开一些原本需要多次点击图标才能打开的界面,如常用的输入cmd打开dos命令行,输入taskmgr打开任务管理器。此处列出了网上搜集到的一些常用命令。winver 检查windows版本 wmimgmt.msc 打开windows管理体系结构(wmi) wupdmgr windows更新程序 wscrip
- 再看知名应用背后的第三方开源项目
dcj3sjt126com
ios
知名应用程序的设计和技术一直都是开发者需要学习的,同样这些应用所使用的开源框架也是不可忽视的一部分。此前《
iOS第三方开源库的吐槽和备忘》中作者ibireme列举了国内多款知名应用所使用的开源框架,并对其中一些框架进行了分析,同样国外开发者
@iOSCowboy也在博客中给我们列出了国外多款知名应用使用的开源框架。另外txx's blog中详细介绍了
Facebook Paper使用的第三
- Objective-c单例模式的正确写法
jsntghf
单例iosiPhone
一般情况下,可能我们写的单例模式是这样的:
#import <Foundation/Foundation.h>
@interface Downloader : NSObject
+ (instancetype)sharedDownloader;
@end
#import "Downloader.h"
@implementation
- jquery easyui datagrid 加载成功,选中某一行
hae
jqueryeasyuidatagrid数据加载
1.首先你需要设置datagrid的onLoadSuccess
$(
'#dg'
).datagrid({onLoadSuccess :
function
(data){
$(
'#dg'
).datagrid(
'selectRow'
,3);
}});
2.onL
- jQuery用户数字打分评价效果
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/5.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery用户数字打分评分代码 - HoverTree</
- mybatis的paramType
kerryg
DAOsql
MyBatis传多个参数:
1、采用#{0},#{1}获得参数:
Dao层函数方法:
public User selectUser(String name,String area);
对应的Mapper.xml
<select id="selectUser" result
- centos 7安装mysql5.5
MrLee23
centos
首先centos7 已经不支持mysql,因为收费了你懂得,所以内部集成了mariadb,而安装mysql的话会和mariadb的文件冲突,所以需要先卸载掉mariadb,以下为卸载mariadb,安装mysql的步骤。
#列出所有被安装的rpm package rpm -qa | grep mariadb
#卸载
rpm -e mariadb-libs-5.
- 利用thrift来实现消息群发
qifeifei
thrift
Thrift项目一般用来做内部项目接偶用的,还有能跨不同语言的功能,非常方便,一般前端系统和后台server线上都是3个节点,然后前端通过获取client来访问后台server,那么如果是多太server,就是有一个负载均衡的方法,然后最后访问其中一个节点。那么换个思路,能不能发送给所有节点的server呢,如果能就
- 实现一个sizeof获取Java对象大小
teasp
javaHotSpot内存对象大小sizeof
由于Java的设计者不想让程序员管理和了解内存的使用,我们想要知道一个对象在内存中的大小变得比较困难了。本文提供了可以获取对象的大小的方法,但是由于各个虚拟机在内存使用上可能存在不同,因此该方法不能在各虚拟机上都适用,而是仅在hotspot 32位虚拟机上,或者其它内存管理方式与hotspot 32位虚拟机相同的虚拟机上 适用。
- SVN错误及处理
xiangqian0505
SVN提交文件时服务器强行关闭
在SVN服务控制台打开资源库“SVN无法读取current” ---摘自网络 写道 SVN无法读取current修复方法 Can't read file : End of file found
文件:repository/db/txn_current、repository/db/current
其中current记录当前最新版本号,txn_current记录版本库中版本