- 【TCN回归预测】蜣螂算法优化时间卷积神经网络DBO-TCN负荷数据回归预测【含Matlab源码 6222期】
Matlab领域
matlab
欢迎来到海神之光博客之家✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,完整代码论文复现程序定制期刊写作科研合作扫描文章底部QQ二维码。个人主页:海神之光代码获取方式:海神之光Matlab王者学习之路—代码获取方式⛳️座右铭:行百里者,半于九十。更多Matlab智能算法神经网络预测与分类仿真内容点击①Matlab神经网络预测与分类(进阶版)②付费专栏Matlab智能算法神经网络预
- RTMP|RTSP播放器只解码视频关键帧功能探讨
音视频牛哥
RTSP播放器RTMP播放器大牛直播SDK实时音视频音视频rtsp播放器rtmp播放器rtspplayerrtmpplayer大牛直播SDK
技术背景我们在做RTMP|RTSP直播播放器的时候,遇到过这样的技术诉求,在一些特定的应用场景中,可能只需要关键帧的信息,例如视频内容分析系统,可能只对关键帧进行分析,以提取特征、检测对象或场景变化。鉴于关键帧包含完整的图像信息,解码时不需要依赖其他帧,可以独立解码。相比之下,预测帧(P帧)和双向预测帧(B帧)需要参考其他帧的信息进行解码,在这种情况下,仅解码关键帧可以满足需求,同时避免不必要的解
- 【ELM回归预测】蜣螂算法优化极限学习机DBO-ELM数据回归预测【含Matlab源码 3566期】
Matlab仿真科研站
matlab
欢迎来到Matlab仿真科研站博客之家✅博主简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,Matlab项目合作可私信。个人主页:Matlab仿真科研站博客之家代码获取方式:扫描文章底部QQ二维码⛳️座右铭:行百里者,半于九十;路漫漫其修远兮,吾将上下而求索。⛄更多Matlab神经网络预测与分类(仿真科研站版)仿真内容点击Matlab神经网络预测与分类(仿真科研站版)⛄一、蜣螂算法优化
- 【电力负荷预测】蜣螂算法优化回声神经网络DBO-ESN电力负荷预测(多输入单输出)【含Matlab源码 5346期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 【BP回归预测】蜣螂算法优化BP神经网络DBO-BP光伏数据预测(多输入单输出)【含Matlab源码 5175期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 【CNN回归预测】蜣螂算法优化卷积神经网络DBO-CNN风电数据预测(多输入单输出)【含Matlab源码 5289期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- QRCNN-BiLSTM卷积神经网络-双向长短期记忆神经网络分位数回归区间预测附Matlab完整源码
天天酷科研
分位数回归区间预测(QR)QRCNN-BiLSTM卷积双向长短期记忆神经网络分位数回归区间预测
效果模型描述QRCNN-BiLSTM卷积神经网络-双向长短期记忆神经网络分位数回归区间预测附Matlab完整源码QRCNN-BiLSTM(QuantileRegressionConvolutionalNeuralNetwork-BidirectionalLongShort-TermMemory)是一种结合了卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)的分位数回归模型,用于区间预测
- 期权定价的魔法:Black-Scholes公式(一)
区块链
前言对冲?动态对冲?对冲基金?这些术语,你可能都耳熟能详。但什么是对冲?它的理论基础和实际操作是什么?有多少人能够精确描述?更不用说,对冲基金的具体运作机制和动态对冲的复杂性了。这些问题的答案可以追溯到一个关键的金融工具:期权。你可能听说过期权能够帮助投资者管理风险、预测价格走势,甚至在市场下跌时实现收益。但你是否真正理解它背后精妙的定价机制?Black-Scholes模型,被称为金融界的“相对论
- 基于CNN+Transformer混合模型实现交通流量时序预测(PyTorch版)
矩阵猫咪
cnntransformerpytorch卷积神经网络深度学习
前言系列专栏:【深度学习:算法项目实战】✨︎涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记忆、自然语言处理、深度强化学习、大型语言模型和迁移学习。随着城市化进程的加速,交通流量预测成为城市交通管理与规划中的关键任务。准确的交通流量预测
- 预测未来,Python中的时间序列分析模型ARIMA
Python学研大本营
python开发语言
时间序列分析:Python中的ARIMA模型,ARIMA模型是一种常用的时间序列预测工具,可以使用statsmodels库在Python中实现。微信搜索关注《Python学研大本营》,加入读者群,分享更多精彩时间序列分析广泛用于预测和预报时间序列中的未来数据点。ARIMA模型被广泛用于时间序列预测,并被认为是最流行的方法之一。在本教程中,我们将学习如何在Python中搭建和评估用于时间序列预测的A
- 一、深度学习的基本介绍
关关钧
深度学习深度学习人工智能神经网络
机器学习的基本步骤:前馈运算、反向传播计算梯度、根据梯度更新参数值。一、定义及基本概念深度学习,就是一种利用深度人工神经网络来进行自动分类、预测和学习的技术。它可以从海量的数据中自动学习,找寻数据中的特征。所以说,它的本质就是自动提取特征的能力。可以说,深度学习就等于深度人工神经网络。一般认为超过三层的神经网络就可以叫做深度神经网络。深度学习属于一种特殊的人工智能技术。反向传播算法:此算法是人工神
- 一分钟学会MATLAB-时间序列预测模型
koi&
matlabAI编程gptAI写作学习
时间序列预测是使用过去的数据点来预测未来的数据点。MATLAB提供了强大的工具和函数库来建立和评估时间序列预测模型。以下是一个使用MATLAB进行时间序列预测的基本流程,包括数据准备、模型建立、模型评估和预测。时间序列预测实例代码1.数据准备首先,需要准备时间序列数据。这可以是从文件导入的数据,也可以是通过生成函数创建的数据。%示例:生成一个简单的正弦波数据作为时间序列t=0:0.01:10;%时
- sklearn模型评估全景:指标详解与应用实例
2402_85758936
scala开发语言人工智能
sklearn模型评估全景:指标详解与应用实例在机器学习中,模型评估是衡量算法性能的关键步骤。scikit-learn(简称sklearn)提供了一套全面的模型评估工具,帮助开发者量化模型的准确性、健壮性和其他重要特性。本文将详细介绍sklearn中的模型评估指标,并通过代码示例展示如何应用这些指标。模型评估的重要性模型评估指标是理解和改进模型性能的基础。它们可以提供以下信息:准确性:模型预测的准
- 云计算如何与物联网(IoT)结合?
云上的阿七
云计算物联网
今天我们来聊一个既酷炫又实用的话题:云计算如何给物联网插上腾飞的翅膀。智能时代的技术密码想象一下,你家的冰箱会自动帮你订购即将用完的牛奶,工厂的机器能预测何时需要维修,城市的路灯会根据实时交通流量调整亮度。这些看似科幻的场景,正是云计算与物联网完美融合的魔法。架构师视角下的技术融合我深知这不仅仅是简单的技术叠加,而是一场深度革命。云计算为物联网提供了超级加速器:弹性计算:像变形金刚一样随时调整计算
- Java八股文:MQ篇
皮皮虾我们跑
java开发语言
3-MQ篇消息中间件用于分布式系统中程序之间的异步通信。它基于消息的发布/订阅或点对点机制,实现高效、可靠、可伸缩的消息传递。3.1RabbitMQ3.1.1RabbitMQ如何保证消息不丢失?消息丢失了怎么办?如何保证消息不丢失?开启生产者确认机制,确保生产者的消息ack能到达队列。开启持久化功能,确保消息未消费前在队列中不会丢失开启消费者确认机制auto,由spring确认消息处理成功后完成a
- Python支持向量机(SVM)算法:面向对象的实现与案例详解
闲人编程
进阶算法案例支持向量机算法python深度学习数据分析
目录Python支持向量机(SVM)算法:面向对象的实现与案例详解引言一、支持向量机算法概述1.1支持向量机的基本思想1.2SVM的分类问题1.3SVM的优化目标二、面向对象的SVM实现2.1类的设计2.2Python代码实现2.3代码详解三、案例分析3.1案例一:鸢尾花分类问题描述数据准备模型训练与预测输出结果3.2案例二:手写数字识别问题描述数据准备模型训练与预测输出结果四、SVM的优化与核方
- L8打卡学习笔记
无涯学徒1998
学习笔记支持向量机
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊SVM与集成学习SVMSVM线性模型SVM非线性模型SVM常用参数集成学习随机森林导入数据查看数据信息数据分析随机森林模型预测结果结果分析个人总结SVM超平面:SVM在特征空间中寻找一个能够最大化类别间隔的超平面,称为最大间隔超平面。这个超平面就是将数据集分成不同类别的边界。支持向量:支持向量是离分隔超平面最近的样本点,它们决定了超平面的
- P5学习笔记
无涯学徒1998
pythonpytorch
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊运动鞋品牌识别设置GPU导入数据构建CNN模型编写训练函数编写测试函数设置动态学习率等间隔动态调整自定义调整多间隔调整余弦退火正式训练结果可视化使用模型进行预测个人总结设置GPUimporttorchimporttorch.nnasnnimporttorchvision.transformsastransformsimporttorchv
- 一键获取每日股票数据,自动更新,尽在掌握
舔狼
A股股票数据python金融
用Python和Tushare库获取股票日线数据在金融市场分析中,获取股票的历史数据是进行技术分析和量化投资的基础。Tusharetushare官网是一个提供中国股市数据的API接口,它支持获取股票的日线数据、基本面数据等。本文将介绍如何使用Python语言和Tushare库来获取股票的日线数据,并结合多线程技术提高数据获取的效率。1.环境准备首先,确保你的Python环境中安装了以下库:tush
- paddleseg推理预测文件解析predict.py
weightOneMillion
图像分割每天一篇PaddleSeg学习python人工智能
1预测命令格式predict.py脚本是专门用来可视化预测案例的,命令格式如下所示:pythonpredict.py\--configconfigs/quick_start/bisenet_optic_disc_512x512_1k.yml\--model_pathoutput/iter_1000/model.pdparams\--ima
- PaddleSeg 从配置文件和模型 URL 自动化运行预测任务
如若123
自动化运维人工智能深度学习
gitclonehttps://github.com/PaddlePaddle/PaddleSeg.git#在ipynb里面运行cdPaddleSegimportsyssys.path.append('/home/aistudio/work/PaddleSeg')importos#配置文件夹路径folder_path="/home/aistudio/work/PaddleSeg/configs"#
- 第38周:猫狗识别 (Tensorflow实战第八周)
weixin_46620278
tensorflow人工智能python
目录前言一、前期工作1.1设置GPU1.2导入数据输出二、数据预处理2.1加载数据2.2再次检查数据2.3配置数据集2.4可视化数据三、构建VGG-16网络3.1VGG-16网络介绍3.2搭建VGG-16模型四、编译五、训练模型六、模型评估七、预测总结前言本文为中的学习记录博客原作者:说在前面1)本周任务:了解model.train_on_batch()并运用;了解tqdm,并使用tqdm实现可视
- 【实践】Python实现气象数据分析与可视化
大数据张老师
Python程序设计信息可视化python数据分析可视化
一、项目需求在本节中,我们将明确“气象数据分析与可视化”项目的需求,定义项目的功能和目标,为后续的实现奠定基础。通过本项目,读者将学习如何使用Python的各种数据处理和可视化工具来分析和展示气象数据,从而掌握数据处理与可视化的核心技能。1.项目目标“气象数据分析与可视化”项目的目标是通过对历史气象数据的处理和分析,生成直观的图表和统计结果,帮助用户理解气象趋势并预测未来变化。项目的主要功能如下:
- python用电预测_用Python实时追踪你家的电量使用情况
weixin_39626745
python用电预测
现在的电表(附在你家房子外面的玩意)在每瓦时电量被使用后就会发出一下红外闪光,穿过电表顶部的端口。事实证明,你可以很容易地监测这一闪光,把它解码变成“实时的”电量使用情况,然后做成像这样酷的图表:Y轴表示实时功率,单位是KW,X轴表示时间。这闪光灯,好像有很高的瞬间准确度,至少我家的是这样,这意味着当1瓦时电量被使用时,它会很精确地闪了。这实在太棒了,因为它使得显示精确、实时的电量使用情况可以实现
- Python数据分析案例教程
kkchenjj
数据挖掘python数据分析信息可视化
Python数据分析案例教程Python在数据分析中的应用Python因其简洁的语法、强大的库支持以及广泛的社区资源,已成为数据分析领域的首选语言。它能够处理从数据清洗、数据可视化到机器学习模型构建的整个数据科学流程。本节将深入探讨Python在数据分析中的具体应用,包括但不限于数据清洗、数据探索、统计分析和预测建模。数据清洗数据清洗是数据分析的首要步骤,涉及处理缺失值、异常值、重复数据以及数据类
- 2024 年 MathorCup 数学应用挑战赛——大数据竞赛 赛道 B:电商品类货量预测及品类分仓规划 思路和代码 持续更新中
2025年数学建模美赛
数学建模2024年大数据第五届MathorCupB题
2024年所有数学建模类比赛的个人思路和代码都会发布到专栏内,会结合最新的chatgpt发布思路,开赛一天后恢复原价99,不代写论文,不回复私信.没有群,只需订阅一次目录问题分析与解决思路问题1:货量预测模型问题2:一品一仓分仓规划问题3:一品多仓分仓规划总结这类大数据竞赛的重点在于构建一个全面的预测和优化模型,通过数据处理、时间序列分析以及运筹优化来完成货量预测和分仓规划。下面是一个解决问题的整
- 基于知识图谱的用户画像构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能
目录前言1.知识图谱在用户画像中的作用1.1数据整合与清洗1.2多维关系挖掘1.3动态更新能力1.4可解释性2.用户画像构建过程中的知识图谱应用2.1数据采集2.2知识图谱构建2.2.1实体节点构建2.2.2关系建模2.3用户画像生成2.3.1静态特征2.3.2动态特征2.3.3关系网络3.基于知识图谱的用户画像应用场景3.1精准营销3.2内容推荐3.3用户需求预测3.4风险控制结语前言随着大数据
- 【阅读总结】AlphaFold3 unedited version 通读 + 服务器使用总结
Lasgalena
论文阅读软件使用论文阅读服务器
省流:AlphaFold3能做什么:预测蛋白质、DNA、RNA与允许的配体/离子/共价修饰的复合物结构为什么要用AlphaFold3:有强大的泛化性和准确率,除了RNA结构略差于AIchemy_RNA2外,预测精度高于现有方法(包括Vina和RosettaFold-All-Atom)AlphaFold3怎么用:代码不开源,网站https://alphafoldserver.com/需注册使用,每日
- 【深度学习】搭建PyTorch神经网络进行气温预测
睡不着还睡不醒
深度学习深度学习pytorch神经网络
第一步数据加载与观察①导包importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimporttorchimporttorch.optimasoptimimportwarningswarnings.filterwarnings("ignore")%matplotlibinline②加载数据features=pd.read_csv("te
- 2025-1-21-sklearn学习(43) 使用 scikit-learn 介绍机器学习 楼上阑干横斗柄,寒露人远鸡相应。
汤姆和佩琦
sklearn机器学习sklearn学习python人工智能scikit-learn
文章目录sklearn学习(43)使用scikit-learn介绍机器学习43.1机器学习:问题设置43.2加载示例数据集43.3学习和预测43.4模型持久化43.4规定43.4.1类型转换43.4.2再次训练和更新参数43.4.3多分类与多标签拟合sklearn学习(43)使用scikit-learn介绍机器学习文章参考网站:https://sklearn.apachecn.org/和https
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt